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1 W1: Financial Data & Returns

1.1 Continuous double auction

• Real-time mechanism to match buyers & sellers and determine prices at which trades execute
• At any time, participants can place orders in the form of bids (buy) and asks (sell)
• Matching orders (bid ≥ ask) are executed right away, whereas outstanding orders are maintained

in an order book

1.2 Order types

• Limit order: transact at no more/less than a specific price

– If order not filled, it’s kept in the order book

• Market order: transact immediately at current market price

– A single order can have more than one price

• Iceberg order: contains both hidden and displayed liquidity

– Splits a large order into smaller ones to maintain order anonymity

1.3 Financial data

• Quote data: record of bid/ask prices from order book
• Trade data: record of filled orders

1.3.1 Daily data

• Open/close

– Adjusted close (used for calculating returns): adjusted for dividends and splits

• High/low
• Volume

1.3.2 Candlestick

• Green: close > open
• Red: close < open

5



1.3.3 Other data

• FX rates: currency prices set by global financial centers
• LIBOR rates: average interest rate that major London banks would be charged when borrowing

from each other

1.4 Reliability of financial data

Financial data could be skewed by

• Fake orders: trades placed to manipulate prices w/o intention to trade
• Fake trades: trades where buyer and seller is the same party, used to increase trading activity

1.5 Returns

𝑅𝑡 = 𝑃𝑡−𝑃𝑡−1
𝑃𝑡−1

= 𝑃𝑡
𝑃𝑡−1

− 1

1.5.1 Log returns (assumes continuous compounding)

𝑟𝑡 = log (1 + 𝑅𝑡) = log( 𝑃𝑡
𝑃𝑡−1

) = log (𝑃𝑡)⏟
𝑝𝑡

− log (𝑃𝑡−1) = 𝑝𝑡 − 𝑝𝑡−1

1.5.2 Dividend adjustment

Assuming dividend is reinvested, the adjusted return is

𝑅𝑡 = 𝑃𝑡 + 𝐷𝑡
𝑃𝑡−1

− 1

𝑟𝑡 = log (𝑃𝑡 + 𝐷𝑡) − log (𝑃𝑡−1)

The dividend is added back to the price (after the price drop)

1.5.3 Split adjustment

𝑅𝑡 = 𝑃𝑡
𝑃𝑡−1/2 − 1

𝑟𝑡 = log (𝑃𝑡) − log (𝑃𝑡−1/2)
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1.5.4 Net vs log returns

𝑅𝑡 ≈ 𝑟𝑡 for small values of 𝑅𝑡 (<1%)

Taylor approx.: 𝑓(𝑥) ≈ 𝑓(𝑥0) + 𝑓 ′(𝑥0)(𝑥 − 𝑥0) + 1
2𝑓″(𝑥0)(𝑥 − 𝑥0)2 + ...

𝑟𝑡 = log(1 + 𝑅𝑡⏟
𝑥

) ← expand log function around 𝑥0 = 1

𝑟𝑡 ≈ log(1) + log′(𝑥)|𝑥=1 ⋅ (1 + 𝑅𝑡⏟
𝑥

− 1⏟
𝑥0

) + ...

= 0 + 1
1𝑅𝑡

≈ 𝑅𝑡

Monthly returns

For daily net returns 𝑅1, 𝑅2, … , 𝑅22, monthly net return is:

𝑅1−22 = (1 + 𝑅1) × (1 + 𝑅2) × ⋯ × (1 + 𝑅22) − 1

For daily log returns 𝑟1, 𝑟2, … , 𝑟22, monthly log return is:

𝑟1−22 = log(𝑃22
𝑃21

𝑃21
𝑃20

...𝑃1
𝑃0

)

= log(𝑃22
𝑃21

) + log(𝑃21
𝑃20

) + ... + log(𝑃1
𝑃0

)

= 𝑟1 + 𝑟2 + ⋯ + 𝑟22

1.6 Random walk model

Additive log returns suggest using the following to model asset prices

log( 𝑃𝑡
𝑃0

) = 𝑟1 + 𝑟2 + ... + 𝑟𝑡

If {𝑟𝑡} are i.i.d., then the log return process is a RW with drift 𝜇 and volatility 𝜎

• aggregate returns over 𝑛 periods has mean 𝑛𝜇 and volatility
√𝑛𝜎

1.6.1 Exponential/geometric random walk

𝑃𝑡 = 𝑃0 exp{𝑟1 + ... + 𝑟𝑡}
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1.7 Return distribution

• Most convenient assumption: normal (by CLT)

– Not a good description of reality due to fat tails (heavier than normal)

• Skewness = 𝐸 [(𝑋−𝜇
𝜎 )3]

– Right skewed ⟺ positively skewed

• Kurtosis = 𝐸 [(𝑋−𝜇
𝜎 )4] − 3

– Defined as the standardized fourth central moment of a distribution minus 3, which is the
kurtosis of the standard normal distribution

– Returns are leptokurtic

1.7.1 E.g. Identify skewness/kurtosis from QQ plot
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2 W2: Univariate Return Modelling

2.1 Normality tests

• Kolmogorov-Smirnov - Based on distance of empirical & Normal CDF
• Jarque-Bera - Based on skewness & kurtosis combined
• Shapiro-Wilk (most powerful) - Based on sample & theoretical quantiles (QQ plot)

2.2 Heavy tail distributions

A pdf 𝑓(𝑥) is said to have:

• Exponential tails, if 𝑓(𝑥) ∝ exp(−𝑥/𝜆)
• Polynomial tails, if 𝑓(𝑥) ∝ 𝑥−(1+𝛼)

Heavy tailed distributions are those with polynomial tails.

• 𝛼 is the tail index controlling tail weight: smaller ⟺ heavier tails
• for 𝑘 ≥ 𝛼, moments are infinite: 𝐸(𝑋𝑘) = ∞

– Although the MGF’s is infinite, the characteristic function always exists (refer to PS2 Q2)

2.2.1 Examples

Pareto
𝑓(𝑥) = 𝛼𝑥−𝛼+1

𝑙𝛼
Cauchy: 𝛼 = 1

𝑓(𝑥) = 1
𝜋(1 + 𝑥2)

Student’s t: 𝛼 = 𝜈
𝑓(𝑥) = Γ(𝜈+1

2 )√𝜈𝜋Γ(𝜈
2 )(1 + 𝑥2

𝜈 )− 𝜈+1
2

2.2.2 Theoretical justification

Let 𝑟1, … , 𝑟𝑛 ∼ i.i.d. heavy tail distributions with tail index 0 < 𝛼 < 2
By the generalized CLT, the aggregate return 𝑟1→𝑛 = 𝑟1 + … + 𝑟𝑛 ∼ stable distribution

A distribution is stable if linear combinations of independent RVs have the same distribution,
up to location and scale parameters.

• All stable distributions besides the Normal have heavy tails, but not all heavy tailed distributions
are stable (unstable if tail index > 2)

• Moreover, the sum of independent stable RVs also follows a stable distribution
• Thus, adding many heavy tail (𝜎 = ∞) i.i.d. price changes, we get heavy tail returns

9



2.2.3 Modeling tail behaviour

The complementary CDF of a heavy tail distribution behaves as:

̄𝐹 (𝑥) = 1 − 𝐹(𝑥) = 𝑃(𝑋 > 𝑥) ∼ 𝑥−𝛼, as 𝑥 ↑

To model (absolute) returns above a cutoff 𝑟min , use Pareto distribution ̄𝐹 (𝑟) = (𝑟/𝑟min)𝛼 , ∀𝑟 > 𝑟min

To estimate tail index 𝛼, use:

• Maximum Likelihood: ̂𝛼 = 𝑛
∑𝑛

𝑖=1 ln(𝑟𝑖/𝑟min)
• Pareto QQ plots (for tails, e.g. top 25% of returns):

– Plot empirical CDF vs returns in log-log-scale
– Estimate 𝛼 using slope of best fitting line (simple linear regression)

• Student’s t QQ plot (for entire distribution, not just tails)

– Adjust for location and scale 𝑌 = 𝜇 + 𝜎𝑋 where 𝑋 ∼ 𝑡(𝜈), {𝐸(𝑋) = 0
𝑉 (𝑋) = 𝜈

𝜈−2
– Estimate parameters (𝜇, 𝜎, 𝜈) using MLE

• Mixture models

– Generate an RV from one out of a family of distributions, chosen at random according to
another distribution (a.k.a. mixing distribution)
∗ Easy to generate, but not easy to work with analytically

– 2 types: discrete and continuous

∗ e.g. (discrete mixing distribution) RV generated from {𝑁(0, 1) 𝑝 = 60%
𝑁(5, 3) 𝑝 = 40%

·
– e.g. (continuous mixing distribution) 𝑌 = 𝜇 +

√
𝑉 ⋅ 𝑍 where 𝑉 is a RV. This is called a normal

scale mixture.
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∗ Examples with heavy tails:
· (GARCH) 𝑟𝑡 = 𝜇 + 𝜎𝑡𝑍𝑡 where the mixing process for 𝜎𝑡 is 𝜎2

𝑡 = 𝜔 + ∑𝑝
𝑖=1 𝛼𝑖𝑟2

𝑡−𝑖 +
∑𝑞

𝑗=1 𝛽𝑗𝜎2
𝑡−𝑗

· (T-dist) 𝑡 = 𝑍√𝜈/𝑊 where 𝑊 ∼ 𝜒2(𝑑𝑓 = 𝜈)

E.g. using mixture models, verify that for 𝑋 ∼ 𝑡(𝜈), {𝐸(𝑋) = 0
𝑉 (𝑋) = 𝜈

𝜈−2

Hint: if 𝑊 ∼ 𝜒2(𝜈), then 𝐸(1/𝑊) = 1/(𝜈 − 2).

𝐸(𝑡) = 𝐸(𝑍√𝜈/𝑊) = 𝐸(𝑍)⏟
0

𝐸(√𝜈/𝑊) = 0

𝑉 (𝑡) = 𝐸(𝑡2) − [𝐸(𝑡)]2⏟
0

= 𝐸 (𝑍2 ⋅ 𝜈
𝑊 ) = 𝐸(𝑍2)𝐸 ( 𝜈

𝑊 ) = 1 ⋅ 𝜈𝐸 ( 1
𝑊 ) = 𝜈

𝜈−2

2.3 Stylized Facts

Typical empirical asset return characteristics:

1. Absence of simple autocorrelations
2. Volatility clustering
3. Heavy tails
4. Intermittency (alternation between periodic and chaotic behaviour)
5. Aggregation changes distribution (the distribution is not the same at different time scales)
6. Gain/loss asymmetry

2.4 Extreme value theorem

2 limit results for modelling extreme events that happen with small probability

2.4.1 1st EVT (Normalized max of an iid sequence converges to the generalized extreme value
distribution)

Let 𝑋1, 𝑋2, ... be i.i.d. RVs and 𝑀𝑛 = max(𝑋1, ..., 𝑋𝑛).
∃ normalizing constants 𝑎𝑛 > 0, 𝑏𝑛 s.t.

𝑃 (𝑀𝑛 − 𝑏𝑛
𝑎𝑛

≤ 𝑥) = [𝐹 (𝑎𝑛𝑥 + 𝑏𝑛)]𝑛 → 𝐻(𝑥)
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If 𝐻(𝑥) exists, it must be one of:

Gumbel (exponential tails): 𝐻(𝑥) = exp {−𝑒−𝑥} , 𝑥 ∈ ℝ

Frechet (heavy tails): 𝐻(𝑥) = { 0 𝑥 < 0
exp {−𝑥−𝛼} 𝑥 > 0

Weibull (light/finite tails): 𝐻(𝑥) = { exp {−|𝑥|𝛼} 𝑥 < 0
1 𝑥 > 0

We can combine the three types into the generalized extreme value distribution

𝐻(𝑥) = exp{− (1 + 𝜉 𝑥 − 𝜇
𝜎 )

−1/𝜉

+
}

𝜉 is the shape parameter:

• > 0 for heavy tails
• = 0 for exponential tails
• < 0 for light tails

E.g. Show that the “normalized” max of iid Uniform (0, 1) with 𝑎𝑛 = 1
𝑛 , 𝑏𝑛 = 1 converges to Weibull for

𝑥 < 0
𝑃(𝑀𝑛 − 𝑏𝑛

𝑎𝑛
≤ 𝑥) = 𝑃(𝑀𝑛 − 1

1/𝑛 ≤ 𝑥) = 𝑃(𝑀𝑛 ≤ 𝑥
𝑛 + 1)

= 𝑃(max(𝑈1, ..., 𝑈𝑛) ≤ 1 + 𝑥
𝑛)

=
𝑛

∏
𝑖=1

𝑃(𝑈𝑖 ≤ 1 + 𝑥
𝑛)

= (1 + 𝑥
𝑛)𝑛 = (1 − |𝑥|

𝑛 )𝑛

lim
𝑛→∞

(1 − |𝑥|
𝑛 )𝑛 = 𝑒−|𝑥| ← CDF for Weibull with 𝛼 = 1
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2.4.2 2nd EVT (Conditional distribution converges to GPD above threshold)

For RV 𝑋 with CDF 𝐹(⋅), consider its conditional distribution given that it exceeds some threshold 𝑢:

𝐹𝑢(𝑦) = 𝐹(𝑢 + 𝑦) − 𝐹(𝑢)
1 − 𝐹(𝑢) , 0 ≤ 𝑦 ≤ 𝑥𝐹 − 𝑢

where 𝑥𝐹 = sup{𝑥 ∈ ℝ ∶ 𝐹(𝑥) < 1} is the right endpoint (finite or ∞) of 𝐹
In certain cases, as 𝑢 → 𝑥𝐹 , the conditional distribution converges to the same (family of) distributions
called the Generalized Pareto Distribution (GPD)

𝐹𝑢(𝑦) → 𝐺𝜉,𝜎(𝑦) = 1 − (1 + 𝜉 𝑦
𝜎)

−1/𝜉

+

= {1 − (1 + 𝜉 𝑦
𝜎)−1/𝜉 𝜉 ≠ 0

1 − 𝑒−𝑦/𝜎, 𝜉 = 0

where 𝜎 > 0, 𝑦 ≥ 0, and for 𝜉 < 0, 𝑦 ≤ −𝜎/𝜉
This gives:

• 𝜉 > 0 : heavy tails (tail index 1/𝜉 )
• 𝜉 = 0 : exponential distribution
• 𝜉 < 0 : finite upper endpoint

3 W3: Multivariate Modeling

We can model the returns of a linear combination of assets using a constant matrix 𝐴 like so

𝐶𝑜𝑣(𝐴𝑇 𝑅) = 𝐴𝑇 𝐶𝑜𝑣(𝑅)𝐴

To minimize the effect of outliers, we can use robust estimation - an estimation technique that is
insensitive to small departures from the idealized assumptions that were used to optimize the algorithm
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However, we should never remove outliers in finance. We can instead model heavy tails using the follow-
ing.

3.1 Multivariate (Student’s) t distribution

A more practical/realistic distribution than Normal for modelling financial returns.

R = 𝜇 + Z√𝜈/𝑊 where 𝑍 ∼ 𝑁(0, Λ), 𝑊 ∼ 𝜒2(𝑑𝑓 = 𝜈)
Note that it is a Normal that gets scaled/divided by the square root of a Chi-square

Notation: R ∼ 𝑡𝜈(𝜇, Λ) where Λ = 𝐶𝑜𝑣(𝑍), not 𝐶𝑜𝑣(𝑅)
𝐸(𝑅) = 𝐸(𝑍), but 𝐶𝑜𝑣(𝑍) ≠ 𝐶𝑜𝑣(𝑅)

• 𝐸(𝑅) = 𝐸(𝜇 + 𝑍√𝜈/𝑊) = 𝜇 +���𝐸(𝑍) ⋅ 𝐸(√𝜈/𝑊) = 𝜇
• 𝐶𝑜𝑣(𝑅) = 𝐶𝑜𝑣(𝜇 + 𝑍√𝜈/𝑊) = 𝐶𝑜𝑣(𝑍)𝐶𝑜𝑣(√𝜈/𝑊) = Λ 𝜈

𝜈−2 for v>2

Marginals are t-distributed with the same degrees of freedom ⟹ all asset returns have the same tail
index 𝛼
There is tail dependence - extreme values are observed at the same time in all dimensions (desirable
property for modelling financial returns)
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The greater the tail dependence, the more points we will observe in the corners (figure on the left has tail
dependence).

Linear combinations of multivariate t follow 1D t with the same df

R ∼ 𝑡𝜈(𝜇, Λ) ⟹ w𝑇 R ∼ 𝑡𝜈(w𝑇 𝜇, w𝑇 Λw) - 𝐸(w𝑇 𝑅) = w𝑇 𝐸(𝑅) - 𝑉 𝑎𝑟(w𝑇 𝑅) = w𝑇 𝑉 𝑎𝑟(𝜇+𝑍√ 𝜈
w)w =

w𝑇 𝑉 𝑎𝑟(𝑍)⏟
Λ

𝑉 𝑎𝑟(√ 𝜈
w)w = 𝜈

𝜈−2(w𝑇 Λw)

Using the same degree of freedom is limiting. A more flexible way is to model dependencies with copu-
las.

3.2 Copula

Intuitively, copulas allow us to decompose a joint probability distribution into the following:

• their marginals (which by definition have no correlation)
• a function which couples them together

thus allowing us to specify the correlation separately. The copula is that coupling function. (joint =
copula + marginals)

Formally, a copula is a multivariate CDF with Uniform(0, 1) marginals

𝐶(𝑢1, ..., 𝑢𝑑) ∈ [0, 1], ∀𝑢1, ..., 𝑢𝑑 ∈ [0, 1]

• 𝐶(0, ..., 0) = 0
• 𝐶(1, ..., 1) = 1
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• 𝐶(..., 𝑢𝑖−1, 0, 𝑢𝑖+1, ...) = 0
• 𝐶(1, ..., 1, 𝑢𝑖, 1, ..., 1) = 𝑢𝑖

3.2.1 Independence copula

𝐶indep (𝑢1, … , 𝑢𝑑) = 𝑢1 × ⋯ × 𝑢𝑑

3.2.2 Fréchet-Hoeffding theorem (Copula bounds)

Any copula is bounded like so

𝐶 (𝑢1, … , 𝑢𝑑) ≤ 𝐶 (𝑢1, … , 𝑢𝑑) ≤ ̄𝐶 (𝑢1, … , 𝑢𝑑)

where { 𝐶 (𝑢1, … , 𝑢𝑑) = max{0, 1 − 𝑑 + ∑𝑑
𝑖=1 𝑢𝑖}

̄𝐶 (𝑢1, … , 𝑢𝑑) = min {𝑢1, … , 𝑢𝑑}
• The lower bound is 1 minus number of uniforms plus the values of the uniforms. Observe that the

min of the copula is only non-zero if the average value of the uniforms ∑ 𝑢𝑖
𝑑 > 𝑑−1

𝑑

•

3.2.3 Sklar’s Theorem

Any continuous multivariate CDF 𝐹(𝑥1, ..., 𝑥𝑑) with marginal CDF’s 𝐹𝑖(𝑥𝑖), ∀𝑖 = 1, ..., 𝑑 can be expressed
as a copula

𝐹(𝑥1, ..., 𝑥𝑑) = 𝐶(𝐹1(𝑥1), ..., 𝐹𝑑(𝑥𝑑))

The inverse is also true: any copula combined with marginal CDFs gives a multivariate CDF

If we let 𝑢𝑖 = 𝐹𝑖(𝑥𝑖) ⟹ 𝑥𝑖 = 𝐹 −1
𝑖 (𝑢𝑖) ⟹ 𝐶(𝑢1, ..., 𝑢𝑑) = 𝐹(𝐹 −1

𝑖 (𝑢𝑖), ..., 𝐹 −1
𝑑 (𝑢𝑑))

So, for continuous CDF 𝐹(𝑥1, .., 𝑥𝑑) with marginals 𝐹𝑖(𝑥𝑖), the copula is given by
𝐶(𝑢1, ..., 𝑢𝑑) = 𝐹(𝐹 −1

1 (𝑢1), ..., 𝐹 −1
𝑑 (𝑢𝑑))

E.g. If 𝑋 ∼ 𝐹 , then 𝐹(𝑋) ∼ 𝑈𝑛𝑖𝑓(0, 1), and 𝐹 −1(𝑈𝑛𝑖𝑓) = 𝑋 ∼ 𝐹
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3.2.4 Gaussian Copula

Suppose X ∼ 𝑁𝑑(�, �) with correlation matrix �. Its copula is given by

𝐶𝜌(𝑢1, ..., 𝑢2) = Φ𝜇,Σ(Φ−1
𝜇1,𝜎2

1
(𝑢1), ..., Φ−1

𝜇𝑑,𝜎2
𝑑
(𝑢𝑑))

For the independent copula, the derivative would be a plane.

Note: The Gaussian copula only depends on 𝜌, not on the individual means and variances (𝜇𝑖’s and 𝜎’s).
Shown below.

𝐶𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑢1, … , 𝑢𝑑) = Φ𝜇,Σ(Φ−1
𝜇1,𝜎2

1
(𝑢1)..., Φ−1

𝜇2,𝜎2
2
(𝑢2))

= Φ𝜇,Σ (𝜇1 + 𝜎1Φ−1
0,1(𝑢1), … , 𝜇𝑑 + 𝜎𝑑Φ−1

0,1(𝑢𝑑))

= Φ0,𝜙 ([𝜇1 + 𝜎1Φ−1
0,1(𝑢1)] − 𝜇1
𝜎1

, … , [𝜇𝑑 + 𝜎𝑑Φ−1
0,1(𝑢𝑑)] − 𝜇𝑑
𝜎𝑑

)

= Σ0,𝜙(Φ−1
0,1(𝑢1), … , Φ−1

0,1(𝑢𝑑))

Meta-Gaussian distributions

Multivariate distributions with a Gaussian copula
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3.2.5 Simulation

Copulas can be created from known distributions. To simulate data from a distribution with copula 𝐶
and marginals 𝐹𝑖:

1. Generate (dependent) uniforms
(𝑈1, ..., 𝑈𝑑) ∼ 𝐶

2. Generate target variates from marginals

𝑋𝑖 = 𝐹 −1
𝑖 (𝑈𝑖)∀𝑖

E.g. To generate uniforms from Gaussian copula:

1. Generate multivariate normals with correlation �

Z ∼ 𝑁𝑑(0, 𝜌)

2. Calculate uniforms as their marginal CDF’s

𝑈𝑖 = Φ(𝑍𝑖)

3. Then, use these uniforms with any other marginals

18



For 𝜌 = 0, the pdf of a Gaussian copula vs a t copula looks like

3.3 Elliptical copula

Normal and t distributions both have a dependence structure that is said to be elliptical (due to their
elliptical contours)
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Symmetry of covariance matrix ⟺ same dependence strength for positively and negatively correlated
values

3.4 Archimedean copula

Family of copulas with the following form

𝐶(𝑢1, … , 𝑢𝑑) = 𝜙−1(𝜙(𝑢1) + ⋯ + 𝜙(𝑢𝑑))

where 𝜙 is called the generator function with the following properties:

• 𝜙 is continuous and convex
• 𝜙 ∶ [0, 1] → [0, ∞]
• 𝜙(0) = ∞, 𝜙(1) = 0
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There are infinitely many choices for 𝜙, but the most common ones are:

Name Generator 𝜙(𝑡) Generator Inverse 𝜙−1(𝑠) Parameter
Clayton 𝑡−𝜃 − 1 (1 + 𝑠)−1/𝜃 𝜃 ≥ 0
Frank − ln 𝑒−𝜃𝑡−1

𝑒−𝜃−1 −1
𝜃 ln (1 + 𝑒−𝑠 (𝑒−𝜃 − 1)) 𝜃 ≥ 0

Gumbel (− ln 𝑡)𝜃 𝑒−𝜃⋅√𝑠 𝜃 ≥ 1

2D Archimedean copula random variates:

Contours of 2D pdf’s with Archimedean copulas and standard normal marginals:
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Although Archimedean copulas can model dependence asymmetries, there are limitations in ≥ 3D

• The copula value is constant for any permutation of coordinates 𝑢1, … , 𝑢𝑑

𝐶(𝑢1, … , 𝑢𝑑) = 𝜙−1(𝜙(𝑢1) + ⋯ + 𝜙(𝑢𝑑)

• All pairs of coordinates have the same dependence, which is not the case for elliptical copulas

Alternative: vine copulas, which allow for both asymmetry and differences in pairwise dependence.

3.5 Fitting copulas

For given copula and marginals, we can use MLE to fit multivariate distribution parameters to data, but
the number of parameters can be very high.

Instead, use pseudo-MLE to break problem down into marginals and copula:

• Estimate marginal params for each dimension and calculate uniforms

𝑈 (𝑗)
𝑖 = ̂𝐹𝑗(𝑋(𝑗)

𝑖 ), ∀𝑖 = 1, … , 𝑛, 𝑗 = 1, … , 𝑑

• Then estimate copula using ML on uniforms

4 W4: Portfolio Theory

Assumptions:

• Static multivariate return distribution
• Investors have same views on mean & variance
• Investors want minimum risk for maximum return
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• Investors measure risk by portfolio’s variance
• No borrowing or short-selling restrictions
• No transaction costs

4.1 Two asset portfolio

The portfolio return is 𝑅𝑝 = 𝑤1𝑅1 + 𝑤2𝑅2

𝑅𝑝 = 𝑉 (𝑡) − 𝑉 (0)
𝑉 (0)

= (𝑥1𝑆1(𝑡) + 𝑥2𝑆2(𝑡)) − (𝑥1𝑆1(0) + 𝑥2𝑆2(0))
𝑉 (0)

= 𝑥1(𝑆1(𝑡) − 𝑆1(0)) + 𝑥2(𝑆2(𝑡) − 𝑆2(0))
𝑉 (0)

= 𝑥1
𝑆1(𝑡) − 𝑆1(0)

𝑆1(0)⏟⏟⏟⏟⏟⏟⏟
𝑅1

𝑆1(0)
𝑉 (0) + 𝑥2

𝑆2(𝑡) − 𝑆2(0)
𝑆2(0)⏟⏟⏟⏟⏟⏟⏟

𝑅2

𝑆2(0)
𝑉 (0)

= 𝑥1𝑆1(0)
𝑉 (0)⏟

𝑤1

𝑅1 + 𝑥2𝑆2(0)
𝑉 (0)⏟

𝑤2

𝑅2

We can model it like so
𝑅𝑝 = w𝑇 ⋅ R = (𝑤1 𝑤2) (𝑅1

𝑅2
)

where R ∼ 𝑁2(𝜇, Σ) ⟹ 𝑅 ∼ 𝑁1(𝜇𝑝, 𝜎2
𝑝) with

𝜇𝑝 = 𝐸(𝑅𝑝) = 𝐸(w𝑇 R) = w𝑇 𝐸(R) = w𝑇 �
𝜎2

𝑝 = 𝑉 (𝑅𝑝) = 𝑉 (w𝑇 R) = w𝑇 𝑉 (R)w = w𝑇 Σw

= [𝑤1 𝑤2] [ 𝜎2
1 𝜎12

𝜎21 𝜎2
2

] [𝑤1
𝑤2

]

= 𝑤2
1𝜎2

1 + 2𝑤1𝑤2𝜎12 + 𝑤2
2𝜎2

2

Let 𝑤1 = 𝑤, 𝑤2 = 1 − 𝑤, then 𝜎2
𝑝 = 𝑤2𝜎2

1 + 2𝑤(1 − 𝑤)𝜎12 + (1 − 𝑤)2𝜎2
2

To minimize, differentiate w.r.t. w and set to 0: 𝜕
𝜕𝑤𝜎2

𝑝 = 0

2𝑤𝜎2
1 + 2(1 − 𝑤)𝜎12 − 2𝑤𝜎12 − 2(1 − 𝑤)𝜎2

2 = 0
𝑤(𝜎2

1 − 𝜎12) + (1 − 𝑤)(𝜎12 − 𝜎2
2) = 0

𝑤 = −𝜎12 + 𝜎2
2

𝜎2
1 + 𝜎2

2 − 2𝜎12
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4.2 Multiple asset portfolio

Consider n risky assets with returns 𝑅1, … , 𝑅𝑛

R = ⎡⎢
⎣

𝑅1
⋮

𝑅𝑛

⎤⎥
⎦

∼ 𝑁 ⎛⎜
⎝

𝜇 = ⎡⎢
⎣

𝜇1
⋮

𝜇𝑛

⎤⎥
⎦

, Σ = ⎡⎢
⎣

𝜎2
1 ⋯ 𝜎1𝑛
⋮ ⋱ ⋮

𝜎𝑛1 ⋯ 𝜎2
𝑛

⎤⎥
⎦

⎞⎟
⎠

A portfolio with weights w = [𝑤1, … , 𝑤𝑛]𝑇 s.t. ∑𝑛
𝑖=1 𝑤𝑖 = w𝑇 1 = 1 has

𝑅𝑝 ∼ 𝑁1(𝜇𝑝, 𝜎2
𝑝)

To find the min variance portfolio with given expected return 𝜇𝑝, we solve the following quadratic opti-
mization problem with linear constraints

min
w

{w⊤Σw} , subject to {w⊤𝜇 = 𝜇𝑝
w⊤1 = 1

The set of such portfolios forms a parabola in mean-variance space, containing attainable portfolios.

4.2.1 Minimum variance portfolio weights

We can use Lagrange multipliers to find the minimum variance portfolio weights:

Lagrange Multipliers are used to find the local max/min subject to equality constraints

1 constraint (2 variables): example

ℒ(𝑥, 𝑦, 𝜆) = 𝑓(𝑥, 𝑦) − 𝜆𝑔(𝑥, 𝑦)

∇𝑥,𝑦,𝜆ℒ(𝑥, 𝑦, 𝜆) = 0 ⟺ { ∇𝑥,𝑦𝑓(𝑥, 𝑦) = 𝜆∇𝑥,𝑦𝑔(𝑥, 𝑦)
𝑔(𝑥, 𝑦) = 0

M constraints (n variables):

ℒ (𝑥1, … , 𝑥𝑛, 𝜆1, … , 𝜆𝑀) = 𝑓 (𝑥1, … , 𝑥𝑛) −
𝑀

∑
𝑘=1

𝜆𝑘𝑔𝑘 (𝑥1, … , 𝑥𝑛)

∇𝑥1,…,𝑥𝑛,𝜆1,…,𝜆𝑀
ℒ (𝑥1, … , 𝑥𝑛, 𝜆1, … , 𝜆𝑀) = 0 ⟺ { ∇𝑓(x) − ∑𝑀

𝑘=1 𝜆𝑘∇𝑔𝑘(x) = 0
𝑔1(x) = ⋯ = 𝑔𝑀(x) = 0

Objective function (Lagrangian):

𝐿(w, 𝜆) = w𝑇 �w − 𝜆(w𝑇 1 − 1)
Differentiate and set to 0:

𝜕L
𝜕w = 0

2�w − 𝜆1 = 0

w = 𝜆
2 �−11
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Solve for lambda:
w𝑇 1 = 1 ⟹ 𝜆

2 ⋅ 1𝑇 Σ−11 = 1 ⟹ 𝜆 = 2
1𝑇 Σ−11

Plugging lambda into w, we get

w∗ = Σ−11
1𝑇 Σ−11

It is the row sums of Σ−1 divided by the sum of all its elements.

4.2.2 Risk-free asset

Consider splitting an investment into portfolio (𝜇𝑝, 𝜎𝑝) & risk-free asset, with weights 𝑤𝑝 and 1 − 𝑤𝑝

A risk-free asset has constant return 𝑅𝑓 = 𝜇𝑓 > 0, 𝜎𝑓 = 0
The return is given by 𝑅 = 𝑤𝑝𝑅𝑝 + (1 − 𝑤𝑝)𝑅𝑓 , with

• 𝐸(𝑅) = 𝑤𝑝𝐸(𝑅𝑝) + (1 − 𝑤𝑝)𝐸(𝑅𝑝) = 𝑤𝑝𝜇𝑝 + (1 − 𝑤𝑝)𝜇𝑓
• 𝑉 (𝑅) = 𝑉 (𝑤𝑝𝑅𝑝 + (1 − 𝑤𝑝)𝑅𝑓) = 𝑤2

𝑝𝑉 (𝑅𝑝) = 𝑤2
𝑝𝜎2

𝑝

For a set of assets including risk-free ones, the best investments lie on the line tangent to the efficient
frontier - they are combinations of the tangency portfolio and risk free assets.

• The tangency portfolio is the efficient frontier portfolio that belongs to the tangent line.
• The slope of the line is the Sharpe ratio.

To find the tangency portfolio, maximize Sharpe ratio.
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max{𝜇𝑝 − 𝜇𝑓
𝜎𝑝

} = max
w

{w⊤𝜇 − 𝜇𝑓√
w⊤Σw

} , subject to w⊤1 = 1

Tangency portfolio weights (solution to above) are given by

w𝑇 = Σ−1 (𝜇 − 𝜇𝑓)
1⊤Σ−1 (𝜇 − 𝜇𝑓)

4.3 CAPM (Capital asset pricing model)

If every investor follows mean-variance analysis & the market is in equilibrium, then:

1. Every investor holds some portion of the same tangency portfolio
2. The entire financial market is composed of the same mix of

risky assets
3. Tangency portfolio is simply the market value-weighted index

4.3.1 Market portfolio

Since composition of the tangency portfolio is equivalent to that of the market portfolio, its weights are
just

𝑤𝑖 = 𝑆𝑖𝑂𝑖
∑𝑁

𝑖=1 𝑆𝑖𝑂𝑖

where 𝑆𝑖 = price of asset i, 𝑂𝑖 = # shares outstanding

4.3.2 Capital market line

Every mean-variance efficient portfolio (𝜇𝑝, 𝜎𝑝) lies on the capital market line:

𝜇𝑝 = 𝜇𝑓 + 𝜇𝑀 − 𝜇𝑓
𝜎𝑀

𝜎𝑝

where 𝜇𝑓 is the risk free rate, and (𝜇𝑀 , 𝜎𝑀) is the market portfolio
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4.3.3 Security market Line

CAPM implies the following relationship between risk and expected return for all assets/portfolios (not
just efficient ones)

𝜇𝑖 = 𝜇𝑓 + 𝛽𝑖(𝜇𝑀 − 𝜇𝑓) where 𝛽𝑖 = 𝜎𝑖𝑀
𝜎2

𝑀
= 𝐶𝑜𝑣(𝑅𝑖, 𝑅𝑀)

𝜎2
𝑀

= 𝜇𝑓 + 𝛽𝑖 (𝜇𝑀 − 𝜇𝑓
𝜎𝑀

)
⏟⏟⏟⏟⏟

Sharpe Ratio

𝜎𝑀

Implications:

• At equilibrium, an asset’s return depends only on its relation to the market portfolio.

– 𝛽𝑖 measures the extent to which an asset’s return is related to the market. Higher |𝛽| ⟺
higher risk and reward.

• Investors are only rewarded with higher returns for taking on market/systematic risk
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Derivation: max Sharpe ratio using 1st order conditions

max
w

{𝜇𝑀 − 𝜇𝑓
𝜎𝑀

} = max
w

{w⊤𝜇 − 𝜇𝑓√
w⊤Σw

} , subject to w⊤1 = 1
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E.g. Consider N assets with iid 𝑁(𝜇, 𝜎2) returns and risk free return 𝜇𝑓 < 𝜇. Find market portfolio
weights and SML.

∀w s.t. w𝑇 1 = 1, w𝑇 𝜇1 = 𝜇
Since the market portfolio is the min variance portfolio, we have

w∗ = Σ−11
1𝑇 Σ−11

=
1

𝜎2 I1
1

𝜎2 1𝑇 I1
= 1

𝑁 ⟹ 𝑤𝑖 = 1
𝑁 , ∀𝑖 = 1, … , 𝑁

So the minimum variance is

w𝑇 Σw = ( 1
𝑁 )

2
1𝑇 (𝜎2I)1 = 𝜎2 1

𝑁2 𝑁 = 𝜎2

𝑁

4.3.4 Security characteristic line

To find 𝛽𝑖’s empirically, regress (𝑅𝑖 − 𝑅𝑓) on (𝑅𝑀 − 𝑅𝑓)

(𝑅𝑖,𝑡 − 𝑅𝑓,𝑡) = 𝛽𝑖(𝑅𝑀,𝑡 − 𝑅𝑓,𝑡) + 𝜖𝑡, where 𝜖𝑡 ∼ 𝑁(0, 𝜎2
𝜖,𝑖)
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• 𝑅𝑀 is the market return (proxy by large market index, ex S&P500)
• 𝑅𝑓 is the risk free rate (proxy by T-bill)

The slope of the SCL is the beta estimate:

Mean return vs estimated betas:
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Now consider adding an intercept, 𝛼

(𝑅𝑖,𝑡 − 𝑅𝑓,𝑡) = 𝛼𝑖 + 𝛽𝑖(𝑅𝑀,𝑡 − 𝑅𝑓,𝑡) + 𝜖𝑡

The mean and variance are given by

𝜇𝑖 = 𝐸[𝑅𝑖] = 𝐸[𝑅𝑓,𝑡 + 𝛼𝑖 + 𝛽𝑖(𝑅𝑀,𝑡 − 𝑅𝑓,𝑡) + 𝜖𝑡]
= 𝐸[𝑅𝑓 ]⏟

𝑅𝑓

+𝛼𝑖 + 𝛽𝑖 𝐸[𝑅𝑚 − 𝑅𝑓 ]⏟⏟⏟⏟⏟
𝜇𝑚−𝑅𝑓

+ 𝐸[𝜖𝑡]⏟
=0

= 𝑅𝑓 + 𝛼𝑖 + 𝛽𝑖(𝜇𝑚 − 𝑅𝑓)

𝜎2
𝑖 = 𝕍[𝑅𝑖] = 𝕍[𝑅𝑓 + 𝛼𝑖⏟

𝑉 𝑎𝑟=0

+𝛽𝑖(𝑅𝑚 − 𝑅𝑓) + 𝜖𝑖)]

= 𝕍[𝛽𝑖(𝑅𝑚 − 𝑅𝑓⏟
𝑉 𝑎𝑟=0

)] + 𝕍[𝜖𝑖]

= 𝛽2
𝑖 ⋅ 𝕍[𝑅𝑀 ] + 𝜎2

𝜖,𝑖
= 𝛽2

𝑖 ⋅ 𝜎2
𝑚 + 𝜎2

𝜖,𝑖

𝛼𝑖 measures the excess increase in asset return on top of that explained by the 𝛽𝑖. The bigger the alpha,
the higher the outperformance (compared to the market portfolio).

4.4 Legacy of CAPM

CAPM says the best portfolio you can create is the tangency/market portfolio. This implies the best you
can do is get the broadest index and combine it with a T-bill.

CAPM is wrong, but had immense practical impact on investing, specifically in terms of

• Diversification: concept of decreasing risk by spreading portfolio over different assets

• Index investing: justification for common investing strategy of tracking some broad index with
mutual funds or ETF’s

• Benchmarking: Measuring performance of investment relative to market / index

4.5 Performance Evaluation

There are several ways to measure an asset’s performance, based on CAPM

Sharpe ratio: (excess return per unit risk)

𝑆𝑖 = 𝜇𝑖 − 𝜇𝑓
𝜎𝑖

Treynor index: (excess return per unit non-diversifiable risk)

𝑇𝑖 = 𝜇𝑖 − 𝜇𝑓
𝛽𝑖
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Jensen’s alpha: (excess return on top of the return explained by the market)

𝛼𝑖 = ̂𝛼𝑖

- Usually the most important measure a portfolio manager tries to use to convince people to invest in
them.

5 W5: Factor Models

Main implication of CAPM: the market is the single factor driving asset returns

To improve performance, use more factors that drive asset returns

5.1 Factor Models

3 types:

1. Macroeconomic: Factors are observable economic and financial time series

2. Fundamental: Factors are created from observable asset characteristics

3. Statistical: Factors are unobservable, and extracted from asset returns

All 3 types follow some form of

𝑅𝑖(𝑡) = 𝛽𝑖,0 + 𝛽𝑖,1𝐹1(𝑡) + ⋯ + 𝛽𝑖,𝑝𝐹𝑝(𝑡) + 𝜖𝑖(𝑡), ∀ {𝑖 = 1, … , 𝑁
𝑡 ∈ ℝ

• 𝑅𝑖(𝑡) is return on the 𝑖𝑡ℎ asset at time t
• 𝐹𝑗(𝑡) is the 𝑗𝑡ℎ common factor at time t
• 𝛽𝑖,𝑗 is the factor loading/beta of 𝑖𝑡ℎ asset on the 𝑗𝑡ℎ factor
• 𝜖𝑖(𝑡) is the idiosyncratic/unique return of asset 𝑖𝑡ℎ

In matrix form:

⎡⎢
⎣

𝑅1(𝑡)
⋮

𝑅𝑁(𝑡)
⎤⎥
⎦

= ⎡⎢
⎣

𝛽1,0
⋮

𝛽𝑁,0

⎤⎥
⎦

+ ⎡⎢
⎣

𝛽1,1 ⋯ 𝛽1,𝑝
⋮ ⋱ ⋮

𝛽𝑁,1 ⋯ 𝛽𝑁,𝑝

⎤⎥
⎦

⎡⎢
⎣

𝐹1(𝑡)
⋮

𝐹𝑝(𝑡)
⎤⎥
⎦

+ ⎡⎢
⎣

𝜀1(𝑡)
⋮

𝜀𝑝(𝑡)
⎤⎥
⎦

⇔
R(𝑡) = 𝛽0 + 𝛽⊤F(𝑡) + 𝜀(𝑡)

Assumptions:

• Asset specific errors 𝜖𝑖 are uncorrelated with common factors

𝐶𝑜𝑣(𝜖(𝑡), F(𝑡)) = 0
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• The factors 𝐹𝑗(𝑡) are stationary, with moments

𝐸(F(𝑡)) = 𝜇𝐹 , 𝕍(F(𝑡)) = Σ𝐹

• Errors are serially and contemporaneously uncorrelated across assets

𝐸(𝜖) = 0
𝕍(𝜖(𝑡)) = diag[{𝜎2

𝜖𝑖
}

𝑖=1,…,𝑁
] = Σ𝜖

𝐶𝑜𝑣[𝜖(𝑡), 𝜖(𝑠)] = 0

Find moments of model R(𝑡) = 𝛽0 + 𝛽𝑇 F(𝑡) + 𝜖(𝑡)

𝜇𝑅 = 𝐸(𝛽0 + 𝛽𝑇 𝐹(𝑡) + 𝜖(𝑡))
= 𝛽0 + 𝛽𝑇 𝐸(𝐹(𝑡)) + 𝐸(𝜖(𝑡))
= 𝛽0 + 𝛽𝑇 𝜇𝐹

Σ𝑅 = 𝑉 (𝛽0 + 𝛽𝑇 𝐹(𝑡) + 𝜖(𝑡))
= 𝑉 (𝛽𝑇 𝐹(𝑡)) + 𝑉 (𝜖(𝑡))
= 𝛽𝑇 𝑉 (𝐹(𝑡))𝛽 + Σ𝜖
= 𝛽𝑇 Σ𝐹 𝛽 + Σ𝜖

Find moments of portfolio with w = [𝑤1 … 𝑤𝑁 ]𝑇 , i.e. 𝑅 = w𝑇 R

𝜇 = 𝐸(𝑤𝑇 𝑅) = 𝑤𝑇 𝐸(𝑅) = 𝑤𝑇 (𝛽0 + 𝛽𝜇𝐹 )
𝜎2 = 𝑉 (𝑤𝑇 𝑅) = 𝑤𝑇 𝑉 (𝑅)𝑤 = 𝑤𝑇 (𝛽𝑇 Σ𝐹 𝛽 + Σ𝜖)𝑤

5.2 Time Series Regression Models

Consider model for which factor values are known (e.g. macro/fundamental model).

We can estimate betas & risks (variances) for one asset at a time. For each 𝑖 = 1, … 𝑁 , fit regression
model:

𝑅𝑖(𝑡) = 𝛽𝑖,0 + 𝛽𝑖,1𝐹1(𝑡) + ⋯ + 𝛽𝑖,𝑝𝐹𝑝(𝑡) + 𝜖𝑖(𝑡)
over observations 𝑡 = 1, … , 𝑇
Most models will always include some proxy for the overall economy (e.g. the market). The following is
a famous example.
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5.2.1 Fama-French 3 Factor Model

3 factors

• Excess Market Return (XMT)

– Same as in CAPM.

• Small Minus Big (SMB)

– Captures the size (market cap) of the company/stock.

• High Minus Low (HML)

– High = value stock; low = growth stock.
– Measured using book-to-market ratio.

We can use the factor model to estimate the return covariance matrix.

Var(R) = Σ̂𝑅 = 𝛽̂
⊤

Σ̂𝐹 𝛽̂ + Σ̂𝜀

where:
𝛽̂ = beta coefficient matrix (from regressions)
Σ̂𝐹 = factor sample covariance matrix
Σ̂𝜀 = diagonal error variance matrix (from residuals)

This gives more stable estimates than sample covariance.

5.3 Statistical Factor Models

Factors are unknown and unobserved

• Need to estimate both 𝛽 and 𝐹
• Problem is ill-posed ⟹ need constraints

5.3.1 Assumptions

• Asset specific errors 𝜖𝑖 are uncorrelated with common factors

𝐶𝑜𝑣(𝜖(𝑡), F(𝑡)) = 0

• The factors 𝐹𝑗(𝑡) are orthogonal, with moments

𝐸(F(𝑡)) = 0
𝕍(F(𝑡)) = 𝐼
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• Errors are serially and contemporaneously uncorrelated across assets

𝐸(𝜖) = 0
𝕍(𝜖(𝑡)) = diag[{𝜎2

𝜖𝑖
}

𝑖=1,…,𝑁
] = Σ𝜖

𝐶𝑜𝑣[𝜖(𝑡), 𝜖(𝑠)] = 0

Resulting moments of returns

𝜇𝑅 = 𝐸[𝑅] = 𝐸[𝛽0 + 𝛽𝑇 𝐹 + 𝜖] = 𝛽0 + 𝛽𝑇 𝐸[𝐹 ]⏟
0

+ 𝐸[𝜖]⏟
0

= 𝛽0

Σ𝑅 = 𝕍[𝑅] = 𝕍[𝛽0 + 𝛽𝑇 𝐹 + 𝜖] = 𝛽𝑇 𝕍[𝐹 ]𝛽 + Σ𝜖 = 𝛽𝑇 (𝐼 ⋅ 𝜎𝐹 )𝛽 + Σ𝜖

5.4 Principal component analysis

PCA: constructing a set of variables (components) that capture most of the variability given a set of N
assets

It can be thought of as a linear transformation of original variables.

For a random vector R = [ 𝑅1 ⋯ 𝑅𝑁 ]′ with covariance Σ𝑅 (correlation 𝜌𝑅 ), the PC’s are linear
combinations of (𝑅1, … , 𝑅𝑁)

𝐹1 = 𝛾⊤
1 R = 𝛾11𝑅1 + ⋯ + 𝛾1𝑁𝑅𝑁

⋮
𝐹𝑁 = 𝛾⊤

𝑁R = 𝛾𝑁1𝑅1 + ⋯ + 𝛾𝑁𝑁𝑅𝑁

such that:

• 𝐹1, … , 𝐹𝑁 are uncorrelated
• Each component has maximum variance

Problem definition

We want to find components 𝐹𝑖, 𝐹𝑗 (i.e. find coefficient vectors 𝛾𝑖) s.t.

• 𝐹𝑖 = 𝛾⊤
𝑖 X maximizes Var (𝐹𝑖) = 𝛾⊤

𝑖 Σ𝑅𝛾𝑖 subject to 𝛾⊤
𝑖 𝛾𝑖 = 1

• 𝐶𝑜𝑣 (𝐹𝑖, 𝐹𝑗) = 𝛾⊤
𝑖 Σ𝑅𝛾𝑗 = 0, for any 𝑗 < 𝑖

Solution

Given by eigen-decomposition of ΣR

Σ𝑅 = 𝜆1e1e⊤
1 + ⋯ + 𝜆𝑁e𝑁e⊤

𝑁 = PΛP⊤

where

P = ⎡⎢
⎣

| |
e1 ⋯ e𝑁
| |

⎤⎥
⎦

and Λ = ⎡⎢
⎣

𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝑁

⎤⎥
⎦

• P is an orthogonal matrix, i.e. 𝑃 −1 = 𝑃 𝑇
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• 𝜆1 ≥ ⋯ ≥ 𝜆𝑁 ≥ 0

Principal components: 𝐹𝑗 = 𝑒𝑇
𝑗 R = 𝑒𝑗1

𝑅1 + ⋯ + 𝑒𝑗𝑁𝑅𝑁 , ∀𝑗 = 1, … , 𝑁

F = P𝑇 R = ⎡⎢
⎣

− 𝑒𝑇
1 −
⋮

− 𝑒𝑇
𝑁 −

⎤⎥
⎦

R

Find 𝑉 𝑎𝑟(F)
𝕍(F) = 𝕍(P𝑇 R)

= P𝑇 𝕍(R)P
= P𝑇 Σ𝑅P
= PT(P�PT)P
= Λ

Find the loading of 𝑅𝑖 on 𝐹𝑗 (the beta)

𝑅𝑖 =
𝑁

∑
𝑗=1

𝛽𝑖,𝑗𝐹𝑗 where 𝛽𝑖,𝑗 = 𝐶𝑜𝑣(𝑅𝑗, 𝐹𝑗)
𝑉 𝑎𝑟(𝐹𝑗)

𝐶𝑜𝑣(R, F) = 𝐶𝑜𝑣(R, P𝑇 R)
= 𝐶𝑜𝑣(R, R)P
= Σ𝑅P
= (𝑃Λ𝑃 𝑇 )𝑃
= 𝑃Λ

= 𝑃 ⎡⎢
⎣

𝜆1 0
⋱

0 𝜆𝑁

⎤⎥
⎦

𝑉 𝑎𝑟(𝐹𝑗) = 𝜆𝑗

Total variance of all PC’s = variance of original variable

𝑡𝑟(Λ) = 𝑡𝑟(Σ)
𝜆1 + ⋯ + 𝜆𝑝 = 𝜎2

1 + … 𝜎2
𝑁

Proportion of total variance explained by each PC is

𝜆𝑗
𝜆1 + ⋯ + 𝜆𝑁

How do we choose the number of PCs?

• We can use a scree plot:
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• E.g. In this example, one PC already explains much of the variation
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PCA can be used to identify components that explain overall variation of data, but it does not always give
meaningful PC’s - PC’s are just transformations that capture the most variability, they do not explain
how data was generated.

For a proper data-generating model, use Factor Analysis:

5.5 Factor Analysis

Assuming Σ𝐹 = I, the return variance becomes Σ𝑅 = 𝛽𝑇 𝛽⏟
𝑐𝑜𝑚𝑚𝑢𝑛𝑎𝑙𝑖𝑡𝑦

+ Σ𝜖⏟
𝑢𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠

We need to estimate 𝛽 and variances 𝜎2
𝜖𝑖

using maximum likelihood.

A rotation of 𝛽 (scaling it with orthogonal matrix P) has no effect on the model:

Σ𝑅 = (𝛽⊤P) (P⊤𝛽) + Σ𝜀 = 𝛽⊤ (PP⊤) 𝛽 + Σ𝜀 = 𝛽⊤𝛽 + Σ𝜀

We need further constraints on 𝛽. A common constraint is to rank factors by explained variability, similar
to PCA.
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6 W6: Risk Management

6.1 Types of risks

• Market risk: due to changes in market prices
• Credit risk: counterparty doesn’t honour obligations
• Liquidity risk: lack of asset tradability
• Operational risk: from organization’s internal activities (e.g. legal, fraud, or human error risk)

6.2 Risk measures

• There exists different notions of risk (losing money, bankruptcy, not achieving desired return), but
in practice risk measures are used to determine the amount of cash to be kept on reserve

• Return volatility is not a good risk measure. The following distributions have the same 𝜎, but their
risk profiles are very different

– LHS: average return is positive but it has a fat left tail, so returns could be large negative
values

– RHS: average return is negative, but no chance of getting very large negative values; hence less
risky

6.3 Value at Risk (VaR)

The VaR is the amount that covers losses with probability 1 − 𝛼.
Let 𝐿 be the loss of an investment over time period 𝑇 . (𝐿 = −𝑅, where 𝑅 is revenue).

The VaR is defined as the 1 − 𝛼 quantile of 𝐿 for some 𝛼 ∈ (0, 1):

VaR𝛼 = inf{𝑥 ∶ 𝑃 (𝐿 ≤ 𝑥) ≥ 1 − 𝛼} = inf{𝑥 ∶ 𝑃 (𝐿 > 𝑥) ≤ 𝛼}

For a continuous RV with CDF 𝐹𝐿, it is defined as:

𝑉 𝑎𝑅𝛼 = 𝐹 −1
𝐿 (1 − 𝛼)
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E.g. Consider asset with 𝑁(𝜇 = 0.03, 𝜎2 = 0.04) annual log-returns. Find the 95% confidence level
annual VaR for a $1000 investment in this asset.

Want to find VaR(𝛼) s.t.

𝑃 (𝐿 > 𝑉 𝑎𝑅) = 𝑃(−𝑅 > 𝑉 𝑎𝑅)
= 𝑃(𝑅 < −𝑉 𝑎𝑅)
= 𝑃(𝑆𝑇 − 𝑆0 < −𝑉 𝑎𝑅)
= 𝑃(𝑆𝑇 < 𝑆0 − 𝑉 𝑎𝑅)
= 𝑃(𝑆0𝑒𝑋 < 𝑆0 − 𝑉 𝑎𝑅)

= 𝑃 (𝑋 < log(𝑆0 − 𝑉 𝑎𝑅
𝑆0

))

= 𝑃 (𝑋 − 0.03
.2 <

log (1 − 𝑉 𝑎𝑅
𝑆0

) − 0.03
.2 )

0.05 = 𝑃 (𝑍 <
log (1 − 𝑉 𝑎𝑅

𝑆0
) − 0.03

.2 )

⟹ 𝑧 = −1.645 =
log (1 − 𝑉 𝑎𝑅

𝑆0
) − 0.03

.2
𝑉 𝑎𝑅 = (1 − exp{−1.645 ⋅ 0.20 + 0.03}) ⋅ 𝑆0

= 258.44

Formula for VaR given log returns:

VaR = 𝑆0(1 − exp {𝜇 + 𝑧𝜎})

6.3.1 Limitations

VaR can be misleading as it hides tail risk and discourages diversification.

However, it is still widely used due to the Basel framework (banking regulations).

40



As an example, the following have the same VaR but vastly different risk

Solution: use conditional VaR / expected shortfall

6.4 Conditional VaR / Expected Shortfall

Defined as the expected value (or average) of losses beyond VaR

1
𝛼 ∫

𝛼

0
𝑉 𝑎𝑅(𝑢)𝑑𝑢 = 𝐸(𝐿|𝐿 ≥ 𝑉 𝑎𝑅𝛼)

6.5 Examples

6.5.1 VaR & CVaR of a Normal Variable

If R~N(0, 1), find ES at confidence level 𝛼
Let 𝑍𝛼 denote the top 𝛼-quantile of the standard normal
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Normal pdf:
𝑓(𝑥) = 1√

2𝜋𝜎 exp{−1
2 (𝑥 − 𝜇

𝜎 )
2
}

Standard normal pdf:

𝜙(𝑥) = 1√
2𝜋 exp{−𝑥2

2 }

𝐸𝑆𝛼 = 𝐸(𝐿|𝐿 > 𝑧𝛼) = ∫
∞

𝑧𝛼

𝑥𝜙(𝑥|𝐿 > 𝑧𝛼) 𝑑𝑥

= ∫
∞

𝑧𝛼

𝑥 𝜙(𝑥)
𝑃(𝐿 > 𝑧𝛼) 𝑑𝑥

= 1
𝑃(𝐿 > 𝑧𝛼⏟⏟⏟⏟⏟

𝛼
) ∫

∞

𝑧𝛼

𝑥 1√
2𝜋𝑒−𝑥2/2 𝑑𝑥

= 1
𝛼 ∫

∞

𝑧𝛼

1√
2𝜋 [−𝑒−𝑥2/2]′ 𝑑𝑥

= 1
𝛼

1√
2𝜋 [−𝑒−𝑥2/2]∞𝑥=𝑧𝛼

= 1
𝛼

1√
2𝜋𝑒−𝑧2

𝛼/2

= 1
𝛼𝜙(𝑧𝛼)

More generally, for 𝐿 ∼ 𝑁(𝜙, 𝜎2)
𝐸𝑆𝛼 = 𝜇 + 𝜙(𝑧𝛼)

𝛼 𝜎
𝑉 𝑎𝑅𝛼 = 𝜇 + 𝑧𝛼𝜎

6.6 Risk measure properties

Let 𝜌(𝐿) denote a risk measure for an investment with loss L.

A coherent risk measure must satisfy the following properties:

1. Normalized (the risk of holding no assets is 0)

• 𝜌(0) = 0
2. Translation invariance (adding loss 𝑐 to portfolio increases risk by 𝑐)

• 𝜌(𝐿 + 𝑐) = 𝜌(𝐿) + 𝑐, ∀𝑐 ∈ ℝ
3. Positive homogeneity

• 𝜌(𝑏𝐿) = 𝑏𝜌(𝐿), ∀𝑏 > 0
4. Monotonicity
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• 𝐿1 ≥ 𝐿2 ⟹ 𝜌(𝐿1) ≥ 𝜌(𝐿2)
5. Sub additivity (due to diversification)

• 𝜌(𝐿1 + 𝐿2) ≤ 𝜌(𝐿1) + 𝜌(𝐿2)

E.g. Show that VaR and CVaR are translation invariant and positively homogeneous

Let 𝐿′ = 𝑏𝐿 + 𝑐, then
VaR𝛼(𝐿) = inf{𝑥 ∶ 𝑃 (𝐿 > 𝑥) ≤ 𝛼}
VaR𝛼(𝐿′) = inf{𝑥′ ∶ 𝑃 (𝐿′ > 𝑥′) ≤ 𝛼}

= inf{𝑥′ ∶ 𝑃 (𝑏𝐿 + 𝑐 > 𝑥′) ≤ 𝛼}

= inf{𝑥′ ∶ 𝑃 (𝐿 > 𝑥′ − 𝑐
𝑏 ) ≤ 𝛼 }

= inf {𝑏𝑥 + 𝑐 ∶ 𝑃 (𝐿 > 𝑥) ≤ 𝛼}
= 𝑏 inf {𝑥 ∶ 𝑃 (𝐿 > 𝑥) ≤ 𝛼} + 𝑐
= 𝑏VaR(𝐿) + 𝑐

CVaR𝛼(𝐿) = 1
𝛼 ∫

𝛼

0
VaR𝑢(𝐿) 𝑑𝑢

CVaR𝛼(𝐿′) = 1
𝛼 ∫

𝛼

0
𝑏VaR𝑢(𝐿) + 𝑐 𝑑𝑢

= 𝑏 ( 1
𝛼 ∫

𝛼

0
𝑉 𝑎𝑅𝑢(𝐿) 𝑑𝑢) + 𝑐

= 𝑏 ⋅ CVaR(𝐿) + 𝑐
E.g. Consider 2 risky zero-coupon bonds priced at $95 per $100 face value. If each one has 4% independent
default probability, show that VaR5% is not sub-additive.

Distribution of 𝐿1 or 𝐿2:

𝐿𝑖 = {−5, 𝑝 = 96%
95, 𝑝 = 4%

VaR5%(𝐿𝑖) = inf{𝑥 ∶ 𝑃 (𝐿 > 𝑥) ≤ 5%}
= inf{𝑥 ∶ 𝑃 (𝐿 ≤ 𝑥) ≥ 95%}
= −5

Distribution of 𝐿1 + 𝐿2:

𝐿1 + 𝐿2 =
⎧{
⎨{⎩

−5 − 5 = −10, 𝑝 = .962 = 92.15%
−5 + 95 = 90, 𝑝 = 2(.96)(.04) = 7.68%
95 + 95 = 190, 𝑝 = (.04)2 = 0.16%
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VaR5%(𝐿1 + 𝐿2) = inf{𝑥 ∶ 𝑃 (𝐿1 + 𝐿2 ≤ 𝑥) ≥ 95%} = 90

which is greater than
VaR5%(𝐿1) + VaR5%(𝐿2) = −5 − 5 = −10

This shows that under VaR, owning both bonds is riskier than owning them separately. VaR is thus
incoherent at the 5% level (it hides tail risk). At 3%, it would be coherent.

E.g. Show that CVaR5% is sub-additive.

CVaR5%(𝐿1) = 1
5% ∫

5%

0
VaR𝑢(𝐿1) 𝑑𝑢 = 1

5%(95 ⋅ 4% + (−5) ⋅ 1%) = 73

CVaR5%(𝐿1 + 𝐿2) = 1
5% ∫

5%

0
VaR𝑢(𝐿1 + 𝐿2) 𝑑𝑢 = 1

5%(190 ⋅ 16% + 90 ⋅ 4.84%) = 93.2

We see that CVaR5%(𝐿1 + 𝐿2) = 93.2 ≤ CVaR5%(𝐿1) + CVaR5%(𝐿2) = 2 ⋅ 73

6.7 Entropic VaR

EVaR is a coherent alternative to VaR based on the Chernoff bound, which is attained by applying
Markov’s inequality to 𝑒𝑡𝑋. It is an exponentially decreasing upper bound on the tail of a RV based on
its MGF.

Markov inequality: for a positive RV 𝑋, we have

𝑃(𝑋 ≥ 𝑐) ≤ 𝐸(𝑋)
𝑐 , ∀𝑐 > 0

For loss RV 𝐿 with MGF 𝑀𝐿(𝑧) = 𝐸(𝑒𝑧𝐿) < ∞, ∀𝑧 > 0, we have

𝑃(𝐿 ≥ 𝑐) = 𝑃(𝑒𝑧𝐿 ≥ 𝑒𝑧𝑐) ≤ 𝑀𝐿(𝑧)
𝑒𝑧𝑐

Bound this by 𝛼 and solve for 𝑐:

𝑀𝐿(𝑧)𝑒−𝑧𝑐 ≤ 𝛼 ⟹ 𝑐 = 𝑧−1 ln(𝑀𝐿(𝑧)
𝛼 )

Thus, EVaR is defined as
EVaR𝛼 = inf

𝑧>0
{𝑧−1 ln(𝑀𝐿(𝑧)

𝛼 )}
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6.7.1 EVaR of a Normal Variable

The MGF of a Normal variable 𝐿 ∼ 𝑁(𝜇, 𝜎2) is

𝑀𝐿(𝑍) = 𝑒𝜇𝑧+ 1
2 𝜎2𝑧2 = 𝐸(𝑒𝑧𝐿), ∀𝑧

EVaR is the infimum of the following:

𝑧−1 ln(𝑀𝐿(𝑧)
𝛼 ) = 1

𝑧 ln(𝑒𝜇𝑧+ 1
2 𝜎2𝑧2

𝛼 )

= 1
𝑧 (𝜇𝑧 + 𝜎2𝑧2

2 − ln𝛼)

= 𝜇 + 𝑧𝜎2

2 − ln𝛼
𝑧 = 𝑓(𝑧)

To find infimum (minimum) over z>0, differentiate and set to 0:

0 = 𝜎2

2 + ln𝛼 ( 1
𝑧2 )

𝑧∗ =
√

−2 ln𝛼
𝜎

So we have
EVaR𝛼(𝐿) = inf

𝑧>0
{𝑓(𝑧)} = 𝑓(𝑧∗)

= 𝜇 +
√

−2 ln𝛼
𝜎

𝜎2

2 − ln𝛼
√

−2 ln 𝛼
𝜎

= 𝜇 +
√

−2 ln𝛼
𝜎

𝜎2

2 + 𝜎 ln𝛼−1
√

2 ln𝛼−1

= 𝜇 + 𝜎√− ln𝛼
2 + 𝜎√ ln𝛼−1

2

= 𝜇 + 2𝜎√ ln𝛼−1

2
= 𝜇 + 𝜎

√
2 ln𝛼−1
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6.8 Calculating risk measures

3 ways:

• Parametric modeling
• Historical simulation
• Monte Carlo simulation

Other risk management techniques: stress-testing (worst-cast scenario) and extreme value theory (EVT)

~85% of large banks use historical simulation, the remaining use MC simulation

6.8.1 Parametric modeling

Fitting a distribution to revenues/returns and calculating VaR or CVaR/ES based on distribution

E.g. Assuming net returns of an investment follow a normal distribution, then for an initial capital 𝑆0,
the parametric VaR and CVaR at confidence 1 − 𝛼 are

VaR𝛼 = −𝑆0 × { ̂𝜇 + 𝜎̂Φ−1(𝛼)}

CVaR𝛼 = −𝑆0 × { ̂𝜇 + 𝜎̂𝜙 (Φ−1(𝛼))
𝛼 }

where ̂𝜇, 𝜎̂ are sample estimates, and Φ, 𝜙 are standard normal cdf, pdf.
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6.8.2 Historical simulation

Instead of assuming a specific distribution, it uses the empirical distribution of returns estimated by
historical data.
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6.8.3 Monte Carlo simulation

Even if returns are parametrically modelled, their resulting distribution is often intractable.

E.g. Consider a portfolio of 2 assets - one with normal returns, one with t-distributed returns. The
distribution the portfolio return is not explicitly known.

We can simulate returns from such a model and treat simulated values as historical returns.

6.9 Time Series Models

Static models assume independence over time (but allow dependence across assets)

6.9.1 RiskMetrics Model

A simple time series model using the exponentially weighted moving average for return volatility

𝜎2
𝑡 = 𝜆𝜎2

𝑡−1 + (1 − 𝜆)𝑟2
𝑡−1 where 𝑟𝑡 ∼ 𝑁(0, 𝜎2

𝑡 )
Typically, use 𝜆 = .94 for daily returns

6.9.2 GARCH(p, q) Model

𝑟𝑡 = 𝜇 + 𝜎𝑡𝜖𝑡

where 𝜖𝑡 are iid and 𝜎2
𝑡 = 𝛼0 + ∑𝑝

𝑗=1 𝛼𝑗𝑟2
𝑡−𝑗 + ∑𝑞

𝑘=1 𝛽𝑘𝜎2
𝑡−𝑘
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7 W7: Betting Strategies

If we have a sequence of gambles where we have a positive expected payoff, how do we wager our bets for
optimal results? We will look at a few different strategies below.

Setup. Consider a sequence of independent & identical gambles with

• Let p = P(win) ∈ [0.5, 1]

• For each $1 placed, the payoff is {1 𝑝
−1 𝑞

Starting with initial wealth 𝑉0, assume you bet a constant amount 𝑋 at each step. Find expected wealth
𝐸(𝑉𝑛) after n steps (ignoring ruin: 𝑉𝑡 ≤ 0 for some 𝑡 > 0)

Define indicator RV of winning i-th bet: 𝐼𝑖 = {1 𝑝
0 𝑞

𝑉1 = 𝑉0 + 𝑋𝐼1 − 𝑋(1 − 𝐼1) = 𝑉0 + 𝑋(2𝐼1 − 1)
𝑉2 = 𝑉1 + 𝑋𝐼2 − 𝑋(1 − 𝐼2) = 𝑉1 + 𝑋(2𝐼2 − 1) = 𝑉0 + 𝑋(2(𝐼1 + 𝐼2) − 2)

⋮

𝑉𝑛 = 𝑉0 + 𝑋
⎛⎜⎜⎜⎜⎜
⎝

2
𝑛

∑
𝑖=1

𝐼𝑖
⏟

∼𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛,𝑝)

−𝑛
⎞⎟⎟⎟⎟⎟
⎠

𝐸(𝑉𝑛) = 𝑉0 + 𝑋 (2𝐸 (
𝑛

∑
𝑖=1

𝐼𝑖) − 𝑛)

= 𝑉0 + 𝑋(2𝑛𝑝 − 𝑛)
= 𝑉0 + 𝑛𝑋 (2𝑝 − 1)⏟

>0

Notice that if 𝑝 < 1
2 , 𝐸(𝑉𝑛) could be negative. Otherwise, we can expect to have some positive wealth at

time n which increases linearly. The variance increases quadratically.

Assume we bet $1 at each step. Start with 𝑉0 = 𝑀 . Find the probability of eventual ruin, i.e. 𝑉𝑛 = 0
for some n.

Let 𝜋𝑖 = 𝑃(eventual ruin for 𝑉0 = 𝑖), ∀𝑖 ≥ 1 and 𝜋0 = 1

𝜋𝑖 = 𝜋𝑖+1 ⋅ 𝑝 + 𝜋𝑖−1 ⋅ 𝑞, ∀𝑖 ≥ 1

Assume solution of the form 𝜋𝑖 = 𝑦𝑖

𝑦𝑖 = 𝑝𝑦𝑖+1 + 𝑞𝑦𝑖−1 𝑖=1⟹ 𝑦 = 𝑝𝑦2 + 𝑞 ⟹ 𝑝𝑦2 − 𝑦 + 𝑞 = 0

Solve quadratic:
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𝑦 = −𝑏 ±
√

𝑏2 − 4𝑎𝑐
2𝑎

= −(−1) ± √(−1)2 − 4𝑝𝑞
2𝑝

= 1 ± √1 − 4𝑝(1 − 𝑝)
2𝑝

= 1 ± √1 − 4𝑝 + 4𝑝2

2𝑝

= 1 ± √(2𝑝 − 1)2

2𝑝
= 1 ± (2𝑝 − 1)

2𝑝

= {1 trivial sol’n
1−2𝑝+1

2𝑝 = 1 − 𝑝
𝑝 = 𝑞

𝑝

If 𝑦 = 1, then 𝜋𝑖 = 𝑦𝑖 = 1, ∀𝑖 ≥ 0. This is a trivial solution (probability of ruin = 1 at all times).

So 𝑦 = 𝑞
𝑝 , and the probability of eventual ruin is 𝜋𝑖 = 𝑦𝑖 = ( 𝑞

𝑝)𝑖, ∀𝑖 ≥ 0
Assume we bet everything (entire wealth) at each step. What is our expected wealth 𝐸(𝑉𝑛) after
𝑛 steps, not ignoring ruin?

𝑉𝑛 = {𝑉0 ⋅ 2𝑛 𝑝𝑛

0 1 − 𝑝𝑛

𝐸(𝑉𝑛) = 2𝑛𝑉0 ⋅ 𝑝𝑛 + 0 ⋅ (1 − 𝑝𝑛) = 𝑉0(2𝑝)𝑛

Note that as 𝑛 → ∞, 𝐸(𝑉𝑛) → ∞ since 2p>1. Wealth will grow exponentially.

Assume we bet a fixed fraction 𝑓 of wealth at each step. What is our expected wealth 𝐸(𝑉𝑛)
after 𝑛 steps?

𝑉𝑖 = {𝑉𝑖−1(1 + 𝑓) 𝑝
𝑉𝑖−1(1 − 𝑓) 𝑞

𝑉𝑛 = 𝑉𝑛−1(1 + 𝑓)𝐼𝑛(1 − 𝑓)1−𝐼𝑛

= 𝑉0(1 + 𝑓)∑𝑛
𝑖=1 𝐼𝑖(1 − 𝑓)𝑛−∑𝑛

𝑖=1 𝐼𝑖

𝐸(𝑉𝑛) = 𝐸(𝑉0(1 + 𝑓)𝑤(1 − 𝑓)𝑛−𝑤) ← w = |wins|

= 𝑉0(1 − 𝑓)𝑛 𝐸 (1 + 𝑓
1 − 𝑓 )

𝑤

⏟⏟⏟⏟⏟
(𝑞+𝑝 1+𝑓

1−𝑓 )𝑛
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This step uses the PGF (probabilistic generating function) of Binomial(n, p):

𝐺𝑤(𝑧) = 𝐸(𝑧𝑤) = (𝑞 + 𝑝𝑧)𝑛

Continuing:

𝐸(𝑉𝑛) = 𝑉0(1 − 𝑓)𝑛 (𝑞 + 𝑝1 + 𝑓
1 − 𝑓 )

𝑛

= 𝑉0(𝑞(1 − 𝑓)) + 𝑝(1 + 𝑓))𝑛

= 𝑉0(1 − 𝑞𝑓 + 𝑝𝑓)𝑛

= 𝑉0(1 + 𝑓(𝑝 − 𝑞⏟
1−𝑝

))𝑛

= 𝑉0(1 + 𝑓(2𝑝 − 1⏟
>0

))𝑛

We have exponential growth and a low probability of ruin.

7.1 Kelly Criterion

Bet fraction of wealth that maximizes expected log return (or equivalently log of 𝑉𝑛, or geometric average
of returns).

Note: by Jensen’s inequality, maximizing log wealth != maximizing wealth, i.e.

𝐸(log𝑉𝑛) ≠ log(𝐸(𝑉𝑛))

7.1.1 What is the optimal value of the fraction?

𝐸 (log 𝑉𝑛
𝑉0

) = 𝐸 (log(��𝑉0(1 + 𝑓)𝑤(1 − 𝑓)𝑛−𝑤

��𝑉0
))

= 𝐸(𝑤 log(1 + 𝑓) + (𝑛 − 𝑤) log(1 − 𝑓))
= log(1 + 𝑓)𝐸(𝑤) + log(1 − 𝑓)(𝑛 − 𝐸(𝑤))
= log(1 + 𝑓)𝑛𝑝 + log(1 − 𝑓)(𝑛 − 𝑛𝑝)
= log(1 + 𝑓)𝑛𝑝 + log(1 − 𝑓)𝑛𝑞
= 𝐺(𝑓)

Now maximize G(f) w.r.t. 𝑓 and set to 0

𝑑𝐺(𝑓)
𝑑𝑓 = 𝑑

𝑑𝑓 (log(1 + 𝑓)𝑛𝑝 + log(1 − 𝑓)𝑛𝑞)

0 = 𝑛 ( 1
1 + 𝑓 𝑝 − 1

1 − 𝑓 𝑞)
𝑝

1 + 𝑓 = 𝑞
1 − 𝑓

𝑝(1 − 𝑓) = 𝑞(1 + 𝑓)
𝑝 − 𝑞 = 𝑓(𝑝 + 𝑞)

𝑓∗ = 𝑝 − 𝑞 = 2𝑝 − 1
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The optimal fraction is the difference between P(win) and P(lose).

7.1.2 What is the geometric average of the returns as 𝑛 → ∞?

Denoting the growth rate from 𝑖 − 1 to 𝑖 with 𝑟𝑖 = 𝑉𝑖
𝑉𝑖−1

, the geometric average is

𝑛√𝑟1 × ⋯ × 𝑟𝑛 = [
𝑛

∏
𝑖=1

(1 + 𝑓)𝐼𝑖(1 − 𝑓)1−𝐼𝑖]
1/𝑛

= (1 + 𝑓)∑𝑛
𝑖=1 𝐼𝑖/𝑛(1 − 𝑓)∑𝑛

𝑖=1(1−𝐼𝑖)/𝑛

= (1 + 𝑓)𝑊𝑛/𝑛(1 − 𝑓)1−𝑊𝑛/𝑛

where 𝑊𝑛 ∼ 𝐵𝑖𝑛𝑜𝑚(𝑛, 𝑝)
By SLLN, 𝑊𝑛

𝑛 → 𝑝 as 𝑛 → ∞, so the geometric average → (1 + 𝑓)𝑝(1 − 𝑓)𝑞

7.1.3 General Setup

Now consider a general sequence of bets, where $1 bet +$a if win and −$b if lose. (In previous examples,
a = b = 1, and the bet is favourable, i.e.𝑝𝑎 > 𝑞𝑏.)
The Kelly criterion optimal fraction to bet is: (Proved in PS 7.1b)

𝑓∗ = 𝑝𝑎 − 𝑞𝑏
𝑎𝑏

In the following example, f = 0.55 - 0.45 = 0.1
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7.1.4 Investing Example

Now consider the following. We have a…

• risk free asset with return 𝑟𝑓
• risky asset with return 𝑅: 𝐸(𝑅) = 𝜇, 𝕍(𝑅) = 𝜎2

We invest fraction f of wealth into risky asset & remaining (1–f) into risk-free asset.

Apply Kelly Criterion to find f that maximizes logarithm of wealth:

𝑉1 = 𝑓𝑉0 ⋅ (1 + 𝑅) + (1 − 𝑓)𝑉0 ⋅ (1 + 𝑟𝑓)
= 𝑉0[��𝑓 + 𝑓𝑅 + 1��−𝑓 + 𝑟𝑓 − 𝑓𝑟𝑓 ]
= 𝑉0[1 + 𝑟𝑓 + 𝑓(𝑅 − 𝑟𝑓)]

log(𝑉𝑛
𝑉0

) = log(
𝑛

∏
𝑡=1

𝑉𝑡
𝑉𝑡−1

) =
𝑛

∑
𝑡=1

log(1 + 𝑟𝑓 + 𝑓(𝑅𝑡 − 𝑟𝑓))

𝐸 [log(𝑉𝑛
𝑉0

)] =
𝑛

∑
𝑡=1

𝐸[log(1 + 𝑟𝑓 + 𝑓 ⋅ (𝑅𝑡 − 𝑟𝑓))]

= 𝑛𝐸[log(1 + 𝑟𝑓 + 𝑓 ⋅ (𝑅𝑡 − 𝑟𝑓))]

Use Taylor expansion for 𝑥0 = log(1 + 𝑟𝑓 + 𝑓(𝑅𝑡 − 𝑟𝑓)) around 1 + 𝑟𝑓

𝑔′(𝑥0 + 𝛿) ≈ 𝑔(𝑥0) + 𝑔′(𝑥0)𝛿 + 1
2𝑔″(𝑥0)𝛿2

53



Applying this, we get

log(1 + 𝑟𝑓⏟
𝑥0

+ 𝑓 ⋅ (𝑅𝑡 − 𝑟𝑓)⏟⏟⏟⏟⏟
𝛿

) ≈ log(1 + 𝑟𝑓)⏟⏟⏟⏟⏟
𝑔(𝑥0)

+ 1
1 + 𝑟𝑓⏟
𝑔′(𝑥0)

𝑓 ⋅ (𝑅𝑡 − 𝑟𝑓) + 1
2 (− 1

(1 + 𝑟𝑓)2 )
⏟⏟⏟⏟⏟⏟⏟

𝑔″(𝑥0)

𝑓2 ⋅ (𝑅𝑡 − 𝑟𝑓)2

𝐸(log(1 + 𝑟𝑓 + 𝑓 ⋅ (𝑅𝑡 − 𝑟𝑓))) ≈ log(1 + 𝑟𝑓) + 1
1 + 𝑟𝑓

𝑓 ⋅ 𝐸(𝑅𝑡 − 𝑟𝑓)⏟⏟⏟⏟⏟
𝜇−𝑟𝑓

+1
2 (− 1

(1 + 𝑟𝑓)2 ) 𝑓2 ⋅ 𝐸[(𝑅𝑡 − 𝑟𝑓)2]⏟⏟⏟⏟⏟
(𝜎2+𝜇2)+𝑟2

𝑓−2𝜇𝑟𝑓

≈ log (1 + 𝑟𝑓) + 𝑓 (𝜇 − 𝑟𝑓)
(1 + 𝑟𝑓) − 𝑓2 𝜎2 + (𝜇 − 𝑟𝑓)2

2 (1 + 𝑟𝑓)2

= 𝐺(𝑓)

Differentiate w.r.t. f and set to 0:

𝜕
𝜕𝑓 𝐺(𝑓) = 0

𝜇 − 𝑟𝑓
1 + 𝑟𝑓

− 𝑓 𝜎2 + (𝜇 − 𝑟𝑓)2

(1 + 𝑟𝑓)2 = 0

𝑓∗ = (1 + 𝑟𝑓) (𝜇 − 𝑟𝑓)
𝜎2 + (𝜇 − 𝑟𝑓)2

Since 𝜎2 ≫ 𝜇 − 𝑟𝑓 , we have

𝑓∗ ≈ (1 + 𝑟𝑓) (𝜇 − 𝑟𝑓)
𝜎2
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7.1.5 Theoretical properties

In the long term (𝑛 → ∞) with probability 1, a strategy based on Kelly criterion:

1. Maximizes limiting exponential growth rate of wealth

2. Maximizes median of final wealth
• Half of distribution is above median & half below it

3. Minimizes the expected time required to reach a specified goal for the wealth

7.1.6 Criticism

• Can have considerable wealth volatility (b/c of multiplicative bet amounts)
• Does not account for the uncertainty in probability of winning

– Many practitioners use fractional or partial Kelly, i.e. using smaller than Kelly fraction (e.g.,
f*/2)

• In practice, investing horizons are not infinite and there are many other considerations (e.g. trans-
action costs, short-selling limits etc)
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8 W8: Statistical Arbitrage

Statistical Arbitrage (StatArb) refers to trading strategies that utilize the “statistical mispricing” of
related assets

StatArb strategies are typically short term and market neutral, involving long & short positions simulta-
neously

Examples of StatArb strategies:

• Pairs trading
• Index Arbitrage
• Volatility Arbitrage
• Algorithmic & High Frequency Trading

8.1 Pairs Trading

• Original & most well-known StatArb technique developed by Morgan Stanley quants
• Profit not affected by overall market movement (market neutral)
• Contrarian strategy profits from price convergence of related assets

8.1.1 Main idea

1. Select pair of assets “moving together”, based on certain criteria
2. If prices diverge beyond certain threshold, buy low sell high
3. If prices converge again, reverse position and profit

8.1.2 Example

Let 𝐿 = price of lower asset, 𝐻 = price of higher asset.

• Open the position when prices diverge: buy $1 of low asset ( 1
𝐿0

units), sell $1 of high asset ( 1
𝐻0

units)

– cost = 1
𝐿0

𝐿0 − 1
𝐻0

𝐻0 = 0
• Close the position when prices converge

– profit = 1
𝐿0

𝐿𝑐 − 1
𝐻0

𝐻𝑐 (c stands for closing)

Profitability is determined by asset price ratios (hence the use of log ratios for modelling):
𝐻𝑐
𝐻0

− 𝐿𝑐
𝐿0

< 𝑜𝑟 > 0
𝐻𝑐
𝐻0

< 𝑜𝑟 > 𝐿𝑐
𝐿0

log(𝐻𝑐
𝐿𝑐

) < 𝑜𝑟 > log(𝐻0
𝐿0

)
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The strategy is market neutral, i.e. profitability is not affected by market movement - Assets typically
have common market betas

8.1.3 What can go wrong?

Prices may not converge.
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8.1.4 Factors to consider

1. Which pairs to trade

2. When to open trade

3. What amounts to buy/sell

4. When to close trade

5. When to bail out of trade

Most of these decisions involve trade-offs, so how do we select pairs to trade?

• Profitable pairs must have log-ratio with strong mean reversion

– Note: Mean reversion is not the same as simply having constant mean

8.1.5 Mean Reversion

Suggests log-ratio process {𝑋𝑡} is stationary

• 𝐸(𝑋𝑡) = 𝜇, ∀𝑡
• 𝑉 𝑎𝑟(𝑋𝑡) = 𝜎2 < ∞, ∀𝑡
• 𝐶𝑜𝑣(𝑋𝑡, 𝑋𝑠) = 𝐶𝑜𝑣(𝑋𝑡+𝑟, 𝑋𝑠+𝑟), ∀𝑟, 𝑠, 𝑡
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• Autocorrelation function 𝜌(ℎ), ∀ℎ = 0, 1, … describes linear dependence at lag ℎ = |𝑡 − 𝑠|

Stationarity ensures process will revert back to its mean within reasonable time.

E.g. Let 𝑋𝑡 = log(𝐻𝑡
𝐿𝑡

) ∼𝑖𝑖𝑑 𝑁(0, 𝜎2), ∀𝑡 = 1, 2, …
If 𝑋0 = 2𝜎, what is the expected time until 𝑋𝑇 ≤ 0? I.e. until log𝐻𝑡 − log𝐿𝑡 < 0
On any day t, 𝑃(𝑋𝑡 ≤ 0) = 1

2

Let T = # days until {𝑋𝑡 ≤ 0} for the first time. T is called hitting time, it is equal to # trials until 1st
success (if 𝑋 ≤ 0), so 𝑇 ∼ 𝐺𝑒𝑜𝑚(𝑝 = 1

2) which has prob mass function

𝑝𝑇 (𝑡) = (1
2)

𝑡
, ∀𝑡 ≥ 1

The expected time is hence
𝐸(𝑇 ) = 1

𝑝 = 2

E.g. Let 𝑋𝑡 = log(𝑃1𝑡
𝑃2𝑡

) ∼ Brownian Motion (BM) (continuous time Random Walk)

For any 𝑋0 = 𝑐 > 0, show that the expected time until 𝑋𝑇 ≤ 0 is infinite.

Let 𝑇𝑐 = {first time standard BM with 𝑊0 = 0} hits level c Let 𝑀𝑡 = max {𝑊𝑢; 0 ≤ 𝑢 ≤ 𝑡} ⟹ 𝑀𝑡 ∼
|𝑊𝑡|
This means:

𝑃 (𝑇𝑐 ≤ 𝑡) =  𝑃(𝑀𝑡 ≥ 𝑐) = 𝑃(|𝑊𝑡| ≥ 𝑐) = 2Φ (− 𝑐√
𝑡)

PDF of 𝑇𝑐 is given by 𝑓(𝑡) = 𝑑
𝑑𝑡𝑃(𝑇𝑐 ≤ 𝑡)

𝑓(𝑡) = 𝑑
𝑑𝑡 [2Φ (− 𝑐√

𝑡)]

= 2𝜙 (− 𝑐√
𝑡) ⋅ 𝑑

𝑑𝑡 (− 𝑐√
𝑡)

= 2𝜙 (− 𝑐√
𝑡) ⋅ (1

2
𝑐√
𝑡3 )

= 1√
2𝜋𝑒− 1

2
𝑐2
𝑡

𝑐√
𝑡3

𝐸(𝑇𝑐) = ∫
∞

0
𝑡 ⋅ 𝑓(𝑡) 𝑑𝑡 = ∫

∞

0
𝑡 ⋅ 𝑐√

2𝜋𝑡3 𝑒− 𝑐2
2𝑡 𝑑𝑡

= 𝑐√
2𝜋 ∫

∞

0

1√
𝑡𝑒−𝑐2/2𝑡 𝑑𝑡

≥ 𝑐′
√

2𝜋 ∫
𝑎

0

1√
𝑡 𝑑𝑡 + ∫

∞

𝑎

1√
𝑡𝑒−𝑐2/2𝑡 𝑑𝑡 → ∞

⟹ 𝐸(𝑇𝑐) = ∞

59



8.2 Integrated Series

A non-stationary time series {𝑋𝑡} whose difference {∇𝑋𝑡 = 𝑋𝑡 − 𝑋𝑡−1} is stationary

Asset log prices are not stationary - will need to apply differencing

Although 𝑟𝑡 = log( 𝑆𝑡
𝑆𝑡−1

) follows a stationary process, log𝑆𝑡 = log𝑆0 + ∑𝑡
𝑖=1 𝑟𝑖 is a random walk

Example: IBM stock price before and after differencing

8.2.1 Cointegration

Two integrated series {𝑋𝑡, 𝑌𝑡} are cointegrated if there exists a linear combination of them that is station-
ary.

Consider a vector of time series 𝑥𝑡. If each element becomes stationary after differencing, but a linear
combination 𝛼′𝑥𝑡 is already stationary, then 𝑥𝑡 is said to be co-integrated with 𝛼, which is the co-
integrating vector.

There may be several such co-integrating vectors so that 𝛼 becomes a matrix. Interpreting 𝛼′𝑥𝑡 = 0 as a
long run equilibrium, co-integration implies that deviations from equilibrium are stationary, with
finite variance, even though the series themselves are non-stationary and have infinite variance.

For pairs trading, we want to find assets which are cointegrated (their log difference is mean reverting,
and thus stationary)

E.g. ST, MT, and LT interest rates are co-integrated - they move together but behave as random walks
individually
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E.g. Let {𝑊𝑡} be random walk, and { 𝑋𝑡 = 𝑊𝑡 + 𝜀𝑡
𝑌𝑡 = 𝑊𝑡 + 𝜂𝑡

where 𝜀𝑡, 𝜂𝑡 ∼iid 𝑁 (0, 𝜎2)

Show that {𝑋𝑡, 𝑌𝑡} are cointegrated

First, we need to show 𝑋𝑡, 𝑌𝑡 are integrated (not stationary, with stationary 1st order differences).

𝕍 (𝑋𝑡) = 𝕍 [𝑊𝑡 + 𝜖𝑡] = 𝕍 (𝑊𝑡) + 𝕍 (𝜖𝑡) = 𝑡𝜎2
𝑤 + 𝜎2 ⟹ not stationary

Which is the same case for 𝑌𝑡

Next, show cointegration by showing 𝑋𝑡 − 𝑋𝑡−1 is stationary.

∇𝑋𝑡 = 𝑋𝑡 − 𝑋𝑡−1 = 𝑊𝑡 + 𝜖𝑡 − 𝑊𝑡−1 − 𝜖𝑡−1 = (𝑊𝑡 − 𝑊𝑡−1)⏟⏟⏟⏟⏟
𝜈𝑡∼𝑊𝑁(0,𝜎2)

+𝜖𝑡 − 𝜖𝑡−1

𝐸(∇𝑋𝑡) = 𝐸(𝜈𝑡) + 𝐸(𝜖𝑡) − 𝐸(𝜖𝑡−1) = 0 ⟹ not stationary
𝑉 (∇𝑋𝑡) = 𝑉 (𝜈𝑡) + 𝑉 (𝜖𝑡) + 𝑉 (𝜖𝑡−1) = 𝜎2 + 2𝜎2

𝜖
𝐶𝑜𝑣(∇𝑋𝑡, ∇𝑋𝑠) = 𝛾(𝑡 − 𝑠)

If |t-s| > 1, 𝐶𝑜𝑣(∇𝑋𝑡, ∇𝑋𝑠) = 𝐶𝑜𝑣(𝜈𝑡 + 𝜖𝑡 − 𝜖𝑡−1, 𝜈𝑠 + 𝜖𝑠 − 𝜖𝑠−1) = 0
If |t-s| = 1, 𝐶𝑜𝑣(∇𝑋𝑡, ∇𝑋𝑠) = 𝐶𝑜𝑣(𝜈𝑡 + 𝜖𝑡 − 𝜖𝑡−1, 𝜈𝑡+1 + 𝜖𝑡+1 − 𝜖𝑡) = 𝐶𝑜𝑣(𝜖𝑡, −𝜖𝑡) = −𝜎2

𝜖
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∇𝑋𝑡 is thus stationary ⟹ 𝑋𝑡 ∼ 𝐼(1) is integrated of order 1 (and similarly for 𝑌𝑡)

𝑋𝑡 − 𝑌𝑡 = 𝑤𝑡 + 𝜖𝑡 − (𝑤𝑡 + 𝑛𝑡) = 𝜖𝑡 − 𝑛𝑡
𝑖𝑖𝑑∼ 𝑁(0, 𝜎2

𝜖 + 𝜎2
𝑛) is stationary, so (𝑋𝑡, 𝑌𝑡) are cointegrated.

8.2.2 Stationarity Tests

Hypothesis test for { 𝐻0 : series is integrated
𝐻1 : series is stationary

Idea: fit 𝑋𝑡 = 𝛽𝑋𝑡−1 + 𝜀𝑡 to data and test { 𝐻0 ∶ 𝛽 = 1
𝐻1 ∶ 𝛽 < 1

For random walk, we fail to reject the null hypothesis that 𝑋𝑡 is integrated.
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Issue: we don’t know which linear combination to check for stationarity

Two-step method

• Estimate linear relationship between variables

• Test resulting difference series (residuals) for stationarity
• Example: regress Chevron on Exxon log-prices

–
– Then, test residuals for stationarity: reject the null hypothesis that it is integrated -

• Problems:

– Regressing P1 and P2 can give different results than regressing the other way around.
– There is estimation error for residuals.

• Can be used to address spurious regression

– Results of random walk (integrated series) regressions are NOT reliable

63



∗ Consider 2 independent random walks {𝑊𝑡, 𝑉𝑡}
∗ When you regress 𝑊𝑡 = 𝛽0 + 𝛽𝑉𝑡 + 𝑒𝑡, 𝑡 = 1, … , 𝑛 you are NOT guaranteed that ̂𝛽 → 0 as

the sample size 𝑛 → ∞ (i.e. not consistent)

Vector Error Correction models (VECM)

Combined treatment of dynamics & cointegration, using Vector AutoRegressive (VAR) models

8.3 Index Arbitrage

• Indices measure value/performance of financial markets

– Dow-Jones Industrial Average (DJIA): Simple average of 30 major US stock prices (since
1896)

– Standard & Poor (S&P) 500: Weighted (cap-base) average of 500 large NYSE & NASDAQ
listed companies

• Financial indices are NOT traded instruments. However, there are many financial products whose
value is directly related to indices:

– Mutual funds: e.g., Vanguard® 500 Index Fund

– Exchange-Traded-Funds (ETF’s): e.g., SPDR or iShares S&P500 Index

– Futures: e.g., E-Mini S&P futures

• Financial products based on indices essentially offer a sophisticated version of multivariate cointe-
gration

– For an index of N assets {𝑆𝑖}
𝑁
𝑖=1 w/ weights {𝑤𝑖}

𝑁
𝑖=1, the index level is 𝐼(𝑡) = ∑𝑁

𝑖=1 𝑤𝑖 × 𝑆𝑖(𝑡)
– It has a co-integrating relationship with 𝐹(𝑡), an instrument tracking index (e.g. futures)

𝐹(𝑡) − 𝐼(𝑡) = 𝐹(𝑡) −
𝑁

∑
𝑖=1

𝑤𝑖 × 𝑆𝑖(𝑡) ∼ stationary
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8.4 Volatility Arbitrage

• VolArb is implemented with derivatives, primarily options
• The higher the volatility, the higher the option price

Consider European options:

• For Black-Scholes formula, the only unobserved input is volatility 𝜎, which has to be estimated

• Implied volatility 𝜎𝑖i s the input that makes Black-Scholes price equal to observed market price

– not estimated from underlying asset dynamics

• If volatility will increase in the future, beyond what current options prices warrant (implied vol),
some possible strategies are:

– straddles (long at the money call and put)
– strangles (long out of the money call and put)
– delta-hedged long call or put

• Delta-neutral strategies eliminate effects of asset movement
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–

• Common approach is to describe the evolution of volatility with GARCH (Generalized AutoRegres-
sive Conditional Heteroskedasticity) models

𝑦𝑡 = 𝜎𝑡 ⋅ 𝜀𝑡, 𝜀𝑡 ∼𝑖𝑖𝑑 𝑁(0, 1)

𝜎2
𝑡 = 𝛼0 +

𝑝
∑
𝑗=1

𝛼𝑗𝑦2
𝑡−𝑗 +

𝑞
∑
𝑘=1

𝛽𝑘𝜎2
𝑡−𝑘

9 W9: Monte Carlo Simulation

9.1 Numerical Option Pricing

3 basic numerical option pricing methods:

1. Binomial trees
2. Finite difference (based on Black Scholes PDE)
3. Monte Carlo simulation (based on SDE for asset prices & risk neutral valuation)

9.2 Multivariate Normal Properties

If X = [ X1
X2

] ∼ 𝑁 (𝜇 = [ 𝜇1
𝜇2

] , Σ = [ Σ11 Σ12
Σ21 Σ22

]), then:
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9.2.1 Marginals

X1 ∼ N (𝜇1, Σ11)

9.2.2 Linear combinations

a + B⊤X ∼ N (a + B⊤𝜇, B⊤ΣB)

9.2.3 Conditionals

X1 ∣ (X2 = x) ∼ N (𝜇1 + Σ12Σ−1
22 (x − 𝜇2) , Σ11 − Σ12Σ−1

22 Σ21)
Notice how Σ12 = 0 ⟺ X1|(X2 = 𝑥) ∼ 𝑁(𝜇1, Σ11)

9.3 Brownian Motion

𝑊𝑇 ∼ 𝑁(0, 𝑇 ) forms the building block of continuous stochastic models

Recall Ito Processes from STAC70:

A (one-dimensional) Itô process is a stochastic process {𝑋𝑡}𝑡≥0 of the form

𝑋𝑡 = 𝑥0 + ∫
𝑡

0
𝑎𝑠𝑑𝑠 + ∫

𝑡

0
𝑏𝑠𝑑𝐵𝑠

where {𝑎𝑡}𝑡≥0 and {𝑏𝑡}𝑡≥0 are adapted processes such that the integrals are defined. Equiva-
lently, we can write this as

𝑑𝑋𝑡 = 𝑎𝑡𝑑𝑡 + 𝑏𝑡𝑑𝐵𝑡

The Brownian motion {𝐵𝑡}𝑡≥0 is an Itô process. (Pick 𝑎𝑡 ≡ 0 and 𝑏𝑡 ≡ 1.)
The general Brownian motion with (constant) drift 𝜇 ∈ ℝ (and constant volatility 𝜎 > 0) is
an Itô process. (Pick 𝑎𝑡 ≡ 𝜇 and 𝑏𝑡 ≡ 𝜎.)

𝑋𝑡 = 𝑥0 + 𝜇𝑡 + 𝜎𝐵𝑡

9.3.1 Standard Brownian Motion

{𝑊𝑡} with the following properties:

• 𝑊0 = 0
• (𝑊𝑡 − 𝑊𝑠)|𝑊𝑠 ∼ 𝑁(0, 𝑡 − 𝑠)
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9.3.2 Arithmetic Brownian Motion

{𝑋𝑡} with drift 𝜇 and volatility 𝜎 and the following properties:

• 𝑋0 = 0
• (𝑋𝑡 − 𝑋𝑠)|𝑋𝑠 ∼ 𝑁(𝜇(𝑡 − 𝑠), 𝜎2(𝑡 − 𝑠))

⟹ 𝑋𝑡|𝑋𝑠 = 𝑥 ∼ 𝑁(𝑥 + 𝜇(𝑡 − 𝑠), 𝜎2(𝑡 − 𝑠))
SDE form:

𝑋𝑡 − 𝑋0 = ∫
𝑡

0
𝜇𝑑𝑠 + ∫

𝑡

0
𝜎 𝑑𝑊𝑠

= 𝜇𝑡 + 𝜎(𝑊𝑡 − 𝑊0)
𝑑𝑋𝑡 = 𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡

E.g. For 𝑑𝑋𝑡 = 𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡, find distribution of 𝑋𝑡|𝑋𝑠 = 𝑥
For 𝑠 < 𝑡

[𝑋𝑠
𝑋𝑡

] ∼ 𝑁(𝜇 [𝑠
𝑡] , 𝜎2 [𝑠 𝑠

𝑠 𝑡])

⟹ [𝑋𝑡
𝑋𝑠

] ∼ 𝑁(𝜇 [𝑡
𝑠] , 𝜎2 [𝑡 𝑠

𝑠 𝑠])

⟹ 𝑋𝑡|𝑋𝑠 = 𝑥 ∼ 𝑁 (𝜇𝑡 + 𝜎2𝑠 1
𝜎2𝑠(𝑥 − 𝜇𝑠), 𝜎2 (𝑡 − 𝑠1

𝑠𝑠))

∼ 𝑁(𝑥 + 𝜇(𝑡 − 𝑠), 𝜎2(𝑡 − 𝑠))
𝐶𝑜𝑣(𝑊𝑠, 𝑊𝑡) = 𝐶𝑜𝑣(𝑊𝑠, 𝑊𝑠 + (𝑊𝑡 − 𝑊𝑠))

= 𝐶𝑜𝑣(𝑊𝑠, 𝑊𝑠) +((((((((((𝐶𝑜𝑣(𝑊𝑠, (𝑊𝑡 − 𝑊𝑠))
= 𝑉 𝑎𝑟(𝑊𝑠)
= 𝑠

For 𝑠 ∈ (0, 𝑡) (Brownian Bridge)

[𝑋𝑠
𝑋𝑡

] ∼ 𝑁(𝜇 [𝑠
𝑡] , 𝜎2 [𝑠 𝑠

𝑠 𝑡])

𝑋𝑠|𝑋𝑡 = 𝑥 ∼ 𝑁 (𝜇𝑠 + 𝑠1
𝑡 (𝑥 − 𝜇𝑡), 𝜎2 (𝑠 − 𝑠1

𝑡 𝑠))

∼ 𝑁 (𝑠
𝑡 𝑥, 𝜎2 𝑠(𝑡 − 𝑠)

𝑡 )
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9.3.3 Geometric Brownian Motion

Process {𝑆𝑡} whose logarithm follows ABM

𝑆𝑡 = 𝑆0𝑒log( 𝑆𝑡
𝑆0 ) where log( 𝑆𝑡

𝑆0
) ∼ 𝑁(𝜇𝑡, 𝜎2𝑡)

∼ 𝑆0 log𝑁(𝜇𝑡, 𝜎2𝑡)

SDE form:
𝑑 log(𝑆𝑡) = 𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡

𝑑𝑆𝑡 = (𝜇 + 𝜎2

2 ) 𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡

9.4 Risk Neutral Pricing

A risk-neutral (RN) measure or equivalent martingale measure (EMM) is a probability measure
under which discounted asset prices are martingales.

Martingale: a stochastic process with the property 𝐸(𝑋𝑛+1|𝑋1, ..., 𝑋𝑛) = 𝑋𝑛

Assuming GBM for asset {𝑆𝑡} and risk-free interest rate 𝑟, there exists a probability measure such that

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡

𝑆𝑡 ∼ 𝑆0 × log𝑁 ((𝑟 − 𝜎2

2 ) 𝑡, 𝜎2𝑡)

The arbitrage-free price of any European derivative with payoff 𝐺𝑇 = 𝑓 (𝑆𝑇 ) is given by discounted
expectation w.r.t. RN measure

𝐺0 = 𝔼 [𝑒−𝑟𝑇 𝐺𝑇 ] = 𝔼 [𝑒−𝑟𝑇 𝑓 (𝑆𝑇 )]

E.g. Show that under RN measure, 𝐸(𝑆𝑡) = 𝑆0𝑒𝑟𝑡. More generally, 𝐸(𝑆𝑡/𝑒𝑟𝑡|𝑆𝑠) = 𝑆𝑠/𝑒𝑟𝑡.

𝐸(𝑆𝑡) = 𝐸(𝑆0𝑒log(𝑆𝑡/𝑆0)) = 𝑆0𝔼(𝑒𝑌 ) where 𝑌 = log( 𝑆𝑡
𝑆0

) ∼ 𝑁 ((𝑟 − 𝜎2

2 ) 𝑡, 𝜎2𝑡)

Use the Normal MGF:

If 𝑋 ∼ 𝑁(𝜇, 𝜎2), then 𝑚𝑋(𝑧) = 𝑒𝜇𝑧+ 1
2 𝜎2𝑧2

𝑚𝑌 (1) = exp

⎧{{
⎨{{⎩

(𝑟 − 𝜎2

2 ) 𝑡
⏟⏟⏟⏟⏟

𝐸(𝑌 )

+1
2 𝜎2𝑡⏟

𝕍(𝑌 )

⎫}}
⎬}}⎭

= 𝑆0𝑒𝑟𝑡
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E.g. Find price of forward contract 𝐹0,𝑇 (no dividends)

𝐺𝑇 = 𝑓(𝑆𝑇 ) = (𝑆𝑇 − 𝐹0,𝑇 )

We know 𝐺0 = 0 (forward contracts involve no cashflow at t=0)

By risk neutral pricing, 𝐺0 = 𝐸(𝑒−𝑟𝑇 𝐺𝑇 )

0 = 𝔼(𝑒−𝑟𝑇 (𝑆𝑇 − 𝐹0,𝑇 ))
0 = 𝔼(𝑆𝑇 ) − 𝐹0,𝑇

𝐹0,𝑇 = 𝔼(𝑆𝑇 ) = 𝑒𝑟𝑇 𝔼(𝑒−𝑟𝑇 𝑆𝑇⏟
∼𝑚𝑔𝑙𝑒

) = 𝑒𝑟𝑇 𝑆0

9.5 Estimating Expectations

If 𝔼 [𝑒−𝑟𝑇 𝑓 (𝑆𝑇 )] cannot be calculated exactly, it can be estimated/approximated by simulation:

• Generate N independent random variates 𝑆𝑖(𝑇 ), 𝑖 = 1, … , 𝑁 based on RN measure (i = iterations,
not time)

• By Law of Large Numbers (SLLN)

̂𝐺0 = 1
𝑛

𝑛
∑
𝑖=1

𝑒−𝑟𝑇 𝑓 (𝑆𝑖(𝑇 )) → 𝔼 [𝑒−𝑟𝑇 𝑓 (𝑆𝑇 )] , with prob. 1

• Moreover, by Central Limit Theorem (CLT)

̂𝐺0 − 𝐺0
𝑠𝐺/√𝑛 ∼𝑎𝑝𝑝𝑟. 𝑁(0, 1), where 𝑠2

𝐺 = 1
𝑛 − 1

𝑛
∑
𝑖=1

[𝑒−𝑟𝑇 𝑓 (𝑆𝑖(𝑇 )) − ̂𝐺0]
2

E.g. Show estimator of 𝔼(𝑒−𝑟𝑇 𝑓(𝑆𝑇 )) is consistent, and build 95% confidence interval for 𝐺0

Estimator: 𝔼[𝑒−𝑟𝑇 𝑓(𝑆𝑇 )]
Build a 95% confidence interval for 𝐺0 as well

𝔼( ̂𝐺0) = 𝔼 [ 1
𝑛

𝑛
∑
𝑖=1

𝑒−𝑟𝑇 𝑓(𝑆𝑖(𝑇 ))]

= 1
𝑛

𝑛
∑
𝑖=1

𝔼[𝑒−𝑟𝑇 𝑓(𝑆𝑖(𝑇 ))]⏟⏟⏟⏟⏟⏟⏟
𝐺0

= 1
𝑛𝑛𝐺0 = 𝐺0

Confidence interval:
̂𝐺0 ± 1.96 × 𝑆𝐺√𝑛

70



9.5.1 European Call

Estimate European call price w/ simulation

• Asset price dynamics: 𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡
• Payoff function for strike K & maturity T: 𝑓(𝑆𝑇 ) = (𝑆𝑇 − 𝐾)𝑇

Generate random asset price variates as:

𝑆𝑖(𝑇 ) = 𝑆(0) exp{(𝑟 − 𝜎2

2 ) 𝑇 + 𝜎
√

𝑇 𝑍𝑖}

where 𝑍𝑖 is standard Normal variate
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9.5.2 Multiple assets

Payoff of some options depends on prices of multiple assets

E.g. exchange (outperformance) option w/ payoff

max {𝑆1(𝑇 ) − 𝑆2(𝑇 ), 0} = (𝑆1(𝑇 ) − 𝑆2(𝑇 ))+

Monte Carlo option pricing requires simulating and averaging multiple asset prices/paths. We cannot
simply simulate each asset separately since there could be cross-asset dependence.

9.6 Multivariate Brownian Motion

Define 𝑑-dimensional standard BM

W(𝑡) = ⎡⎢
⎣

𝑊1(𝑡)
⋮

𝑊𝑑(𝑡)
⎤⎥
⎦

with correlation matrix 𝜌 = ⎡⎢
⎣

1 … 𝜌1𝑑
⋮ ⋱ ⋮

𝜌𝑑1 ⋯ 1
⎤⎥
⎦

to have independent Normal increments

W(𝑡) − W(𝑠) ∣ W(𝑠) ∼ 𝑁𝑑(0, (𝑡 − 𝑠)𝜌)

Note: increments are independent over time, but can be dependent across dimensions!
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9.6.1 Multivariate ABM

{X(𝑡)} w/ SDE 𝑑X(𝑡) = 𝜇𝑑𝑡 + 𝜎𝑑W(𝑡), where

𝜇 = [ 𝜇1 ⋯ 𝜇𝑑 ]⊤ , 𝜎 = [ 𝜎1 ⋯ 𝜎𝑑 ]⊤

{W(𝑡)} ∼ 𝑑-dim. standard BM W/ correlations 𝜌
X(𝑡) − X(𝑠) ∣ X(𝑠) ∼ 𝑁𝑑((𝑡 − 𝑠)𝜇, (𝑡 − 𝑠)Σ), where

Σ = [{𝜎𝑖𝜎𝑗𝜌𝑖𝑗}
𝑑
𝑖,𝑗=1] = ⎡⎢

⎣

𝜎2
1 ⋯ 𝜎1𝜎𝑑𝜌1,𝑑
⋮ ⋱ ⋮

𝜎1𝜎𝑑𝜌1,𝑑 ⋯ 𝜎2
𝑑

⎤⎥
⎦

= (𝜎𝜎⊤) ∘ 𝜌

Cholesky Factorization

A simple way to generate correlated Normal variates from independent ones

For a positive definite matrix Σ where x𝑇 Σx > 0, the Cholesky decomposition gives

x𝑇 LL𝑇 x > 0

It’s essentially the square root matrix.

If Z ∼ 𝑁𝑑(0, I) and Σ = LL𝑇 is the Cholesky factorization of the covariance matrix Σ, then

𝕍(LZ) = L𝕍(Z)L𝑇 = LL𝑇 = Σ
⟹ LZ ∼ 𝑁𝑑(0, Σ)

Note that L is lower diagonal.

E.g.

⎡⎢
⎣

𝑊1
𝑊2
𝑊3

⎤⎥
⎦

∼ 𝑁(0, ⎡⎢
⎣

1 1 1
1 2 2
1 2 3

⎤⎥
⎦

) ∼ ⎡⎢
⎣

𝑍1
𝑍1 + 𝑍2

𝑍1 + 𝑍2 + 𝑍3

⎤⎥
⎦

where 𝑍𝑖 ∼ 𝑁(0, 1)
The covariance matrix can be decomposed as

LL𝑇 = ⎡⎢
⎣

1 0 0
1 1 0
1 1 1

⎤⎥
⎦

⎡⎢
⎣

1 1 1
0 1 1
0 0 1

⎤⎥
⎦

Note that 𝑊1 ∼ 𝑁(0, 1), 𝑊2|𝑊1 = 𝑊1 ∼ 𝑁(0, 1), 𝑊3|𝑊2 = 𝑊2 ∼ 𝑁(0, 1)
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10 W10: Pricing Exotic Derivatives

10.1 Path Dependent Options

Derivatives whose payoffs depend on (aspects of) the entire asset price path, instead of just the final
price

10.1.1 Barrier Options

Options that come into existence/get knocked out depending on whether prices hit a barrier. Final payoff
is equal to a call/put.

4 types of Barrier options:

Up-and-out (U&O):

• gets knocked out if prices moves above the barrier
• max must be below barrier for the option to be worth something

Down-and-out (D&O):

• gets knocked out if price moves below the barrier
• min must be above barrier for the option to be worth something

Up-and-in (U&I):

• comes into existence if price moves above the barrier
• max must be above barrier for the option to be worth something

Down-and-in (D&I):

• comes into existence if price moves below the barrier
• min must be below barrier for the option to be worth something

E.g. When 𝐵 < 𝐾 (barrier < strike), 𝐶𝑈&𝑂 = 0 b/c the payoff is not >0

Note that combining “out” and “in” options with the same B, K, T, etc. gives us a vanilla option. E.g.
𝑃𝑈&𝐼 + 𝑃𝑈&𝑂 = 𝑃
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Pricing

Notation:
𝑀𝑇 = max {𝑆𝑡}0≤𝑡≤𝑇 𝑚𝑇 = min {𝑆𝑡}0≤𝑡≤𝑇

The prices are:
𝐶𝑈&𝑂 = 𝑒−𝑟𝑇 𝐸 [(𝑆𝑇 − 𝐾)+ 𝕀{𝑀𝑇 <𝐵}]
𝐶𝐷&𝑂 = 𝑒−𝑟𝑇 𝐸 [(𝑆𝑇 − 𝐾)+ 𝕀{𝑚𝑇 >𝐵}]
𝐶𝑈&𝐼 = 𝑒−𝑟𝑇 𝐸 [(𝑆𝑇 − 𝐾)+ 𝕀{𝑀𝑇 >𝐵}]
𝐶𝐷&𝐼 = 𝑒−𝑟𝑇 𝐸 [(𝑆𝑇 − 𝐾)+ 𝕀{𝑚𝑇 <𝐵}]

10.2 Simulating GBM paths

To price general path dependent options, we need to simulate asset price paths {𝑆𝑡}0≤𝑡≤𝑇

In practice, we discretize time and simulate asset price at m points:

{𝑆 (𝑡𝑖)}
𝑚
𝑖=0 where 𝑡𝑖 = 𝑖 𝑇

𝑚 = 𝑖 ⋅ Δ𝑡, ∀𝑖 = 1, … , 𝑚

For GBM, 𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡 has solution:

𝑆 (𝑡𝑖) = 𝑆 (𝑡𝑖−1) exp{(𝑟 − 𝜎2

2 ) Δ𝑡 + 𝜎
√

Δ𝑡 × 𝑍𝑖} where { Δ𝑡 = 𝑇 /𝑚
𝑍𝑖

𝑖𝑖𝑑∼ 𝑁(0, 1), 𝑖 = 1, … , 𝑚
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Only the neon purple option has a non-zero payoff, since it hasn’t been knocked out (exceed B), and is
above K

10.3 Monte Carlo for Barrier Options

MC for barrier options based on simple discretization leads to biased prices!

All knock-out option prices will be overestimated, because the discretized minima/maxima will not be as
extreme as the true ones (there may be some time point we did not simulate, during which the barrier
could have been crossed, making the option worthless). Similarly, the knock-in option prices will be
underestimated.

Bias can be reduced by increasing number of steps (m) in time discretization, but the computation would
become increasingly expensive.

Trade-off between # paths (n) & # steps (m):

• n↑ ⟺ Var↓ & m↑ ⟺ Bias↓ (Bias-Variance trade-off)
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10.4 Reflection principle

If the path of a Wiener process 𝑊𝑡 reaches a value 𝑦 at time 𝑡, then the subsequent path after time 𝑠 has
the same distribution as the reflection of the subsequent path about the value 𝑦.

𝑃 (𝑀𝑡 > 𝑦, 𝑊𝑡 ≤ 𝑥)

=𝑃 ⎛⎜
⎝
����𝑀𝑡 > 𝑦, 𝑊𝑡 > 𝑦 + (𝑦 − 𝑥)⏟⏟⏟⏟⏟⏟⏟

subset of 𝑀𝑡>𝑦

⎞⎟
⎠

=𝑃 (𝑊𝑡 > 2𝑦 − 𝑥)

10.4.1 Max of standard BM ~ absolute normal

For standard BM {𝑊𝑡}, the max by time T, 𝑀𝑡 = max {𝑊𝑡}0≤𝑡≤𝑇 is distributed as a folded normal.

We want to find the CDF 𝑃 (𝑀𝑇 ≤ 𝑦)

For 𝑥 ≤ 𝑦

𝑃(𝑊𝑇 ≤ 𝑥, 𝑀𝑇 ≤ 𝑦) = 𝑃 (𝑊𝑇 ≤ 𝑥) − 𝑃(𝑊𝑇 ≤ 𝑥, 𝑀𝑇 ≥ 𝑦) ← 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴) − 𝑃(𝐴 ∩ 𝐵𝐶)
= 𝑃(𝑊𝑇 ≤ 𝑥) − 𝑃(𝑊𝑇 ≥ 2𝑦 − 𝑥) ← reflection principle

When 𝑥 = 𝑦, we have

𝑃 (𝑊𝑇 ≤ 𝑦, 𝑀𝑇 ≤ 𝑦) = 𝑃(𝑀𝑇 ≤ 𝑦)
= 𝑃(𝑊𝑇 ≤ 𝑦) − 𝑃(𝑊𝑇 ≥ 2𝑦 − 𝑦)
= 𝑃(𝑊𝑇 ≤ 𝑦) − 𝑃(𝑊𝑇 ≥ 𝑦)
= 𝑃(𝑊𝑇 ≤ 𝑦) − 𝑃(𝑊𝑇 ≤ −𝑦)
= 𝑃(−𝑦 ≤ 𝑊𝑇 ≤ 𝑦)
= 𝑃(|𝑊𝑇 | ≤ 𝑦)
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Thus 𝑀𝑇 ∼ |𝑊𝑇 | (consider first line vs last line above).

E.g. Find the probability that standard BM {𝑊𝑡} hits barrier 𝐵 = 1 before time 𝑇 = 1
Since 𝑊𝑇 ∼ 𝑁(0, 𝑇 ), we have

𝑃(𝑀1 ≥ 1) = 𝑃(|𝑊1| ≥ 1)
= 2𝑃(𝑍 ≥ 1) = 2Φ(−1) = .317862

10.5 Optimal n/m ratio

MC estimates of 𝑃 (max {𝑊𝑡}0≤𝑡≤1 ≥ 1) using path discretization w/ different n (paths), m (steps)

Best MSE lies in the middle:

• High variance when n/m is low
• High bias when n/m is high
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E.g. Estimate probability that standard BM hits 1 before time 1, with MC but without bias.

Generate values of 𝑀𝑇 directly by generating 𝑊𝑇 and setting 𝑀𝑇 = |𝑊𝑇 |. Then, estimate the probability
by the proportion of 𝑀 ′

𝑇 𝑠 that are > 1
Below are MC estimates of 𝑃 (max {𝑊𝑡}0≤𝑡≤1 ≥ 1) using direct simulation of max {𝑊𝑡} w/ 𝑛 = 100, 000

10.6 Extrema of Brownian Motion

• For standard BM {𝑊𝑡}, maximum 𝑀T is distributed as |𝑊𝑇 |
• For arithmetic BM {𝑋𝑡}, the distribution of the maximum is difficult to work with - reflection

principle does not work b/c of drift
• However, one can easily simulate random deviates of maximum using Brownian bridge (Brownian

motion with fixed end point)

– Its construction allows for general treatment of extrema of various processes

Consider ABM: 𝑑𝑋𝑡 = 𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡

Conditional on 𝑋𝑇 = 𝑏, the maximum (𝑀𝑇 |𝑋𝑇 ) = max𝑡 {𝑋𝑡 ∣ 𝑋𝑇 } of the Brownian bridge process has a
Rayleigh distribution:

𝑃 (𝑀𝑇 ≤ 𝑚 ∣ 𝑋𝑇 = 𝑏) = 1 − exp{−2𝑚(𝑚 − 𝑏)
𝜎2𝑇 } , ∀𝑚 ≥ 0 ∨ 𝑏

Note that distribution of conditional maximum is independent of the drift, given 𝑋𝑇 = 𝑏
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10.6.1 Simulating maxima of ABM

1. Generate 𝑋𝑇 ∼ 𝑁 (𝜇𝑇 , 𝜎2𝑇 )
2. Generate 𝑈 ∼ Uniform(0, 1)
3. Calculate 𝑀𝑇 ∣ 𝑋𝑇 = 𝑋𝑇 +√𝑋2

𝑇 −2𝜎2𝑇 log(𝑈)
2

For maxima of GBM, exponentiate ABM result
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10.6.2 Simulating minima of ABM

By symmetry, min of ABM with 𝜇 ≡ max of ABM with −𝜇

10.7 Time Discretization

Path dependent options generally require simulation of entire discretized path. Exceptions are options
depending on maximum (e.g. barrier, look-back).

If prices do not follow GBM, it is generally not possible to simulate from exact distribution of asset prices,
so we need to approximate sample path distribution over discrete times
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10.7.1 Euler Discretization

Consider a general SDE where drift/volatility can depend on time (𝑡) and/or process (𝑆𝑡)

𝑑𝑆𝑡 = 𝜇 (𝑡, 𝑆𝑡) 𝑑𝑡 + 𝜎 (𝑡, 𝑆𝑡) 𝑑𝑊𝑡

There is no general explicit solution for 𝑆𝑡, i.e. distribution of 𝑆𝑡 is unknown (in closed form)

To approximate the behaviour of 𝑆𝑡:

• Discretize time 𝑡𝑖 = 𝑖(𝑇 /𝑚) = 𝑖Δ𝑡, 𝑖 = 0, … , 𝑚
• Simulate (approx.) path recursively, using 𝑍𝑖

𝑖𝑖𝑑∼ 𝑁(0, 1), 𝑖 = 1, … , 𝑚

𝑆 (𝑡𝑖) = 𝑆 (𝑡𝑖−1) + 𝜇 (𝑆 (𝑡𝑖−1) , 𝑡𝑖−1) Δ𝑡 + 𝜎 (𝑆 (𝑡𝑖−1) , 𝑡𝑖−1)
√

Δ𝑡𝑍𝑖

To approximate distribution of 𝑆(𝑇 ), generate multiple (#n) discretized paths

11 W11: Simulation - Variance Reduction Techniques

11.1 Antithetic Variables

For each normal variate 𝑍𝑖, consider its negative −𝑍𝑖. Note that they are dependent. For Uniform(0, 1),
use 𝑈𝑖 and 1 − 𝑈𝑖

Calculate the discounted payoff under both:

𝑌𝑖 = 𝑓(𝑍𝑖), ̃𝑌𝑖 = 𝑓(−𝑍𝑖)

Estimate price as the mean of the RVs

̄𝑌𝐴𝑉 = 1
2𝑛 (

𝑛
∑
𝑖=1

𝑌𝑖 +
𝑛

∑
𝑖=1

̃𝑌𝑖) = 1
𝑛

𝑛
∑
𝑖=1

𝑌𝑖 + ̃𝑌𝑖
2

The idea is to balance payoffs of paths with opposite returns.

11.1.1 Pros and cons

This technique is simple, but not always useful. It only helps if the original and antithetic variates are
negatively related.

We can prove this by comparing its variance 𝑉 ( ̄𝑌𝐴𝑉 ) to the variance of the naive mean 𝑉 ( 1
2𝑛 ∑2𝑛

𝑖=1 𝑌𝑖).
Under what condition does the variance get reduced?
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11.1.2 Variance reduction proof

Variance of naive mean:

𝑉 ( 1
2𝑛

2𝑛
∑
𝑖=1

𝑌𝑖) = ( 1
2𝑛)

2
(2𝑛𝑉 (𝑌𝑖)) = 1

2𝑛𝑉 (𝑌𝑖)

Variance of antithetic mean:

𝑉 ( ̄𝑌𝐴𝑉 ) = 𝑉 ( 1
2𝑛 (

𝑛
∑
𝑖=1

𝑌𝑖 +
𝑛

∑
𝑖=1

̃𝑌𝑖))

= ( 1
2𝑛)

2
𝑉 (

𝑛
∑
𝑖=1

𝑌𝑖 +
𝑛

∑
𝑖=1

̃𝑌𝑖)

= ( 1
2𝑛)

2
[𝑛𝑉 (𝑌𝑖) + 𝑛𝑉 ( ̃𝑌𝑖) + 2𝐶𝑜𝑣 (

𝑛
∑
𝑖=1

𝑌𝑖,
𝑛

∑
𝑗=1

̃𝑌𝑗)]

= ( 1
2𝑛)

2
[2𝑛𝑉 (𝑌𝑖) + 2

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝐶𝑜𝑣(𝑌𝑖, ̃𝑌𝑗)]

= ( 1
2𝑛)

2
[2𝑛𝑉 (𝑌𝑖) + 2

𝑛
∑
𝑖=1

𝐶𝑜𝑣(𝑌𝑖, ̃𝑌𝑖)]

= ( 1
2𝑛)

2
[2𝑛𝑉 (𝑌𝑖) + 2𝑛𝐶𝑜𝑣(𝑌𝑖, ̃𝑌𝑖)]

= 1
2𝑛(𝑉 (𝑌𝑖) + 𝐶𝑜𝑣(𝑌𝑖, ̃𝑌𝑖))

For 𝑉 ( ̄𝑌𝐴𝑉 ) < 𝑉 ( 1
2𝑛 ∑2𝑛

𝑖=1 𝑌𝑖) to hold, we must have

𝐶𝑜𝑣(𝑌𝑖, ̃𝑌𝑖) ≤ 0

Even function => worst case scenario (-Z gives the same value)

11.1.3 Asymptotic distribution of estimator

Find asymptotic distribution of antithetic variable estimator in terms of moments of 𝑌𝑖+ ̃𝑌𝑖
2

By CLT, we have

̄𝑌𝐴𝑉
𝑎𝑝𝑝𝑟𝑜𝑥∼ 𝑁 (𝐸 (𝑌𝑖 + ̃𝑌𝑖

2 ) , 1
𝑛𝑉 (𝑌𝑖 + ̃𝑌𝑖

2 ))

where the mean is 1
2(𝐸(𝑌𝑖) + 𝐸( ̃𝑌𝑖)) = 1

22𝐸(𝑌 ) = 𝐸(𝑌 ) = 𝐸(𝑓(𝑍))
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and the variance is 1
𝑛 ⋅ 1

4(𝑉 (𝑌𝑖) + 𝑉 ( ̃𝑌𝑖) + 2𝐶𝑜𝑣(𝑌𝑖, ̃𝑌𝑖))

= 1
4𝑛(2𝑉 (𝑌𝑖) + 2𝐶𝑜𝑣(𝑌𝑖, ̃𝑌𝑖))

= 1
2𝑛(𝑉 (𝑌𝑖) + 𝐶𝑜𝑣(𝑌𝑖, ̃𝑌𝑖))

11.1.4 Example

Antithetic variable pricing of a European call

11.2 Stratification

Split the RV domain into equiprobable strata, and draw equal number of variates from within each one

Consider 𝑚 equiprobable Normal strata {𝐴𝑗}

𝑃 (𝑍 ∈ 𝐴𝑗) = 1
𝑚 for 𝑗 = 1, … , 𝑚, and 𝑍 ∼ 𝑁(0, 1)

Stratified estimator of 𝑌 = 𝑓(𝑍) is given by

̄𝑌𝑆𝑡𝑟 = 1
𝑚

𝑚
∑
𝑗=1

̄𝑌 (𝑗)

= 1
𝑚

𝑚
∑
𝑗=1

( 1
𝑛

𝑛
∑
𝑖=1

𝑓 (𝑍(𝑗)
𝑖 ))

where ̄𝑌 (𝑗) is the estimator within each stratum 𝑗, and 𝑍(𝑗)
𝑖

𝑖𝑖𝑑∼ 𝑁 (0, 1 ∣ 𝑍(𝑗)
𝑖 ∈ 𝐴𝑗) , 𝑗 = 1, … , 𝑚

84



11.2.1 Mean of estimator

Verify that ̄𝑌𝑆𝑡𝑟 is an unbiased estimator of 𝐸(𝑓(𝑍))

𝐸( ̄𝑌𝑆𝑡𝑟) = 𝐸 ( 1
𝑚

𝑚
∑
𝑗=1

̄𝑌 (𝑗))

= 1
𝑚

𝑚
∑
𝑗=1

𝐸( ̄𝑌 (𝑗))

= 1
𝑚

𝑚
∑
𝑗=1

𝐸 ( 1
𝑛

𝑛
∑
𝑖=1

𝑌 (𝑗)
𝑗 )

= 1
𝑚

𝑚
∑
𝑗=1

1
𝑛

𝑛
∑
𝑖=1

𝐸(𝑌 (𝑗)
𝑖 )⏟

𝐸(𝑌 |𝑍∈𝐴𝑗)

= 1
𝑚⏟

𝑃(𝑍∈𝐴𝑗)

𝑚
∑
𝑗=1

1
𝑛𝑛𝐸(𝑓(𝑍)|𝑍 ∈ 𝐴𝑗)

=
𝑚

∑
𝑗=1

𝐸(𝑓(𝑍)|𝑍 ∈ 𝐴𝑗)𝑃 (𝑍 ∈ 𝐴𝑗)

= 𝐸(𝑓(𝑍)) by LOTP
= 𝐸(𝑌 )

11.2.2 Variance reduction proof

Show that 𝑉 [ ̄𝑌𝑆𝑡𝑟] < 𝑉 [ ̄𝑌 ], where ̄𝑌 = 1
𝑛𝑚 ∑𝑛𝑚

𝑖=1 𝑓 (𝑍𝑖)

𝑉 ( ̄𝑌 ) = 𝑉 ( 1
𝑛𝑚

𝑛𝑚
∑
𝑖=1

𝑌𝑖) = 1
𝑛𝑚𝑉 (𝑌𝑖) = 1

𝑛𝑚 (𝐸(𝑌 2
𝑖 ) − (𝐸(𝑌𝑖))2)) = 1

𝑛𝑚(𝐸(𝑓2(𝑍)) − 𝜇2)

𝑉 ( ̄𝑌𝑆𝑡𝑟) = 𝑉 ( 1
𝑚

𝑚
∑
𝑗=1

̄𝑌 (𝑗)) = 1
𝑚2

𝑚
∑
𝑗=1

𝑉 ( ̄𝑌 (𝑗)) = 1
𝑚2

𝑚
∑
𝑗=1

𝑉 ( 1
𝑛

𝑛
∑
𝑖=1

𝑌 (𝑗)
𝑖 ) = 1

𝑚2𝑛2

𝑚
∑
𝑗=1

𝑛
∑
𝑖=1

𝑉 (𝑌 (𝑗)
𝑖 )

= 1
𝑚2𝑛2

𝑚
∑
𝑗=1

𝑛𝑉 (𝑌 (𝑗)) = 1
𝑚2𝑛

𝑚
∑
𝑗=1

𝑉 (𝑌 |𝑍 ∈ 𝐴𝑗) = 1
𝑚2𝑛

𝑚
∑
𝑗=1

(𝐸(𝑓2(𝑍)|𝑍 ∈ 𝐴𝑗) − (𝐸(𝑓(𝑍))|𝑍 ∈ 𝐴𝑗)2)

= 1
𝑚𝑛

⎧{{{
⎨{{{⎩

𝑚
∑
𝑗=1

𝐸(𝑓2(𝑍)|𝑍 ∈ 𝐴𝑗)
1
𝑚⏟

𝑃(𝑍∈𝐴𝑗)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐸(𝑓2(𝑍))

− 1
𝑚

𝑚
∑
𝑗=1

(𝐸(𝑓(𝑍)|𝑍 ∈ 𝐴𝑗)⏟⏟⏟⏟⏟⏟⏟
𝜇𝑗

)2

⎫}}}
⎬}}}⎭

= 1
𝑚𝑛 {𝐸(𝑓2(𝑍)) − 1

𝑚
𝑚

∑
𝑗=1

𝜇2
𝑗}
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So we have 𝑉 [ ̄𝑌𝑆𝑡𝑟] < 𝑉 [ ̄𝑌 ] since 1
𝑚 ∑𝑚

𝑗=1 𝜇2
𝑗 ≥ 𝜇2 by Jensen’s inequality

So for 𝑓(𝑥) = 𝑥2, a convex function, we have

𝐸(𝑥2)⏟
= 1

𝑚 ∑𝑚
𝑗=1 𝜇2

𝑗

≥ (𝐸(𝑥))2⏟
=𝜇2=( 1

𝑚 ∑𝑚
𝑗=1 𝜇𝑗)2

11.2.3 Pros and cons

This method ensures equal representation of each stratum in the RV’s domain. It always reduces vari-
ance.

It works best when target RV (payoff) changes over its domain, i.e. is highly variable (as opposed to a
flat payoff).

It is computationally difficult for multidimensional RV’s. Getting the conditional distribution within each
stratum can be difficult, and the CDF is often unknown.

11.2.4 Example

Stratified pricing of a European call
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11.3 Control Variates

Estimate 𝐸[𝑌 ] = 𝐸[𝑓(𝑍)] using MC: generate iid 𝑍𝑖 and use

̄𝑌 =
𝑛

∑
𝑖=1

𝑌𝑖/𝑛 =
𝑛

∑
𝑖=1

𝑓 (𝑍𝑖) /𝑛

where 𝑓(⋅) is option’s discounted payoff

Assume there is another option with payoff 𝑔(⋅) whose price 𝐸[𝑋] = 𝐸[𝑔(𝑍)] is known. The idea is to
use MC with the same variates to estimate both 𝐸[𝑌 ] and 𝐸[𝑋], but adjust the estimate ̄𝑌 to take into
account the error of estimate 𝑋̄. E.g. if 𝑋̄ underestimates 𝐸[𝑋], then increase ̄𝑌 .

Adjust ̄𝑌 for estimation error 𝑋̄ − 𝐸[𝑋] linearly, as
̄𝑌 (𝑏) = ̄𝑌 − 𝑏(𝑋̄ − 𝐸[𝑋])

where the coefficient 𝑏 controls adjustment.

11.3.1 Mean of estimator (unbiased proof)

Show that ̄𝑌 (𝑏) is unbiased for any 𝑏 (provided ̄𝑌 , 𝑋̄ are unbiased)
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𝐸( ̄𝑌 (𝑏)) = 𝐸( ̄𝑌 − 𝑏(𝑋̄ − 𝐸(𝑋)))
= 𝐸( ̄𝑌 ) − 𝑏(𝐸(𝑋̄) − 𝐸(𝑋))
= 𝐸(𝑌 ) − 𝑏(𝐸(𝑋) − 𝐸(𝑋)⏟⏟⏟⏟⏟⏟⏟

0 adjustment

)

= 𝐸(𝑌 )

11.3.2 Variance of estimator

𝕍[ ̄𝑌 (𝑏)] = 𝕍[ ̄𝑌 − 𝑏(𝑋̄ − 𝔼(𝑋))] = 𝕍[ ̄𝑌 − 𝑏𝑋̄]
= 𝕍( ̄𝑌 ) + 𝑏2𝕍(𝑋̄) − 2𝑏Cov( ̄𝑌 , 𝑋̄)

= 1
𝑛𝕍(𝑌 ) + 𝑏2 1

𝑛𝕍(𝑋) − 2𝑏Cov( 1
𝑛

𝑛
∑
𝑖=1

𝑓 (𝑋𝑖)⏟
𝑌𝑖

, 1
𝑛

𝑛
∑
𝑖=1

𝑔 (𝑍𝑖)⏟
𝑋𝑖

)

= 1
𝑛𝕍(𝑌 ) + 𝑏2 1

𝑛𝕍(𝑋) − 2𝑏 1
𝑛2 𝑛Cov(𝑓(𝑍)), 𝑔(𝑍))

= 1
𝑛 [𝜎2

𝑌 + 𝑏2𝜎2
𝑋 − 2𝑏𝜎𝑋𝑌 ]

11.3.3 Optimal value of adjustment coefficient

Show that the optimal value of 𝑏 is 𝑏∗ = 𝐶𝑜𝑣(𝑋,𝑌 )
𝑉 𝑎𝑟(𝑋) . This is the regression slope coefficient.

𝜕
𝜕𝑏𝕍( ̄𝑌 (𝑏)) = 0

𝜕
𝜕𝑏 ( 1

𝑛 [𝜎2
𝑌 + 𝑏2𝜎2

𝑋 − 2𝑏𝜎𝑥𝑋𝑌 ]) = 0

𝑏𝜎2
𝑋 − 𝜎𝑋𝑌 = 0

𝑏 = 𝜎𝑋𝑌
𝜎2

𝑋
= 𝜌𝑋𝑌 𝜎𝑋𝜎𝑌

𝜎2
𝑋

= 𝜌𝑋𝑌
𝜎𝑌
𝜎𝑋

In practice, Cov[𝑋, 𝑌 ],Var[𝑋] are unknown, so we estimate 𝑏∗ using MC sample

𝑏̂ = ∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄) (𝑌𝑖 − ̄𝑌 )

∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋̄)2
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11.3.4 Optimal variance

Show that the optimal variance is 𝑉 ( ̄𝑌 (𝑏∗)) = 𝑉 ( ̄𝑌 )(1 − 𝜌2
𝑋𝑌 )

𝕍 [ ̄𝑌 (𝑏∗)] = 1
𝑛 (𝜎2

𝑌 − (𝑏∗)2𝜎2
𝑋 − 2𝑏∗𝜎𝑋𝑌 )

= 1
𝑛 (𝜎2

𝑌 + (𝜌𝑋𝑌
𝜎𝑌
𝜎𝑋

)
2

𝜎2
𝑋 − 2 (𝜌𝑋𝑌

𝜎𝑌
𝜎𝑋

) 𝜎𝑋𝜎𝑌 𝜌𝑋𝑌 )

= 1
𝑛 (𝜎2

𝑌 + 𝜌2
𝑋𝑌 𝜎2

𝑌 − 2𝜌2
𝑋𝑌 𝜎2

𝑌 )

= 1
𝑛𝜎2

𝑌 (1 − 𝜌2
𝑋𝑌 )

= 𝕍( ̄𝑌 ) (1 − 𝜌2
𝑋𝑌 )

In practice, we need to use sample estimates of Var[ ̄𝑌 ], 𝜌𝑋𝑌

11.3.5 Correlation of control

Good control variates have high absolute correlation with option payoff (high 𝜌𝑋𝑌 )

• In-the-money call: 𝜌𝑋𝑌 ≈ 1
– 𝐶𝑜𝑣(𝑆𝑇 , 𝑆𝑇 − 𝐾) > 0
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• Out-of-the-money call: 𝜌𝑋𝑌 ≈ 0
– 𝐶𝑜𝑣(𝑆𝑇 , 0) = 0

• In-the-money put: 𝜌𝑋𝑌 ≈ −1
• Out-of-the-money put: 𝜌𝑋𝑌 ≈ 0

11.3.6 Example

Price European option using final asset price (𝑆𝑡) as control, assuming GBM with 𝑟, 𝜎

• 𝑋 = 𝑆𝑇 = 𝑔(𝑍) = 𝑆0 exp{(𝑟 − 𝜎2
2 ) 𝑇 + 𝜎

√
𝑇 𝑍}

• 𝐸[𝑋] = 𝐸 [𝑆𝑇 ] = 𝑆0𝑒𝑟𝑇

11.4 Importance Sampling

We can reduce variance by changing the distribution (probability measure) from which paths are generated
to give more weight to important outcomes, thereby increasing sample efficiency. The performance of this
method relies heavily on the equivalent measure being used.

E.g. for European call, we put more weight to paths with positive payoff (i.e. paths for which we exercise)

Let 𝜙(𝑧) be pdf of 𝑍, we want to estimate

𝛼 = 𝐸𝜙[𝑓(𝑍)] = ∫
𝑧

𝑓(𝑧)𝜙(𝑧)𝑑𝑧
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Using simple MC, generate sample 𝑍𝑖 ∼𝑖𝑖𝑑 𝜙, 𝑖 = 1, … , 𝑛. The estimate is thus

̂𝛼 =
𝑛

∑
𝑖=1

𝑓 (𝑍𝑖) /𝑛

If we have sample 𝑍′
𝑖

𝑖𝑖𝑑∼ 𝜓, 𝑖 = 1, … , 𝑛 from a new pdf 𝜓, we can still estimate 𝛼 as follows

𝛼 = ∫
𝑧

𝑓(𝑧)𝜙(𝑧)𝑑𝑧 = ∫
𝑧

𝑓(𝑧) 𝜙(𝑧)
𝜓(𝑧)𝜓(𝑧)𝑑𝑧 = 𝐸𝜓 [𝑓 (𝑍′) 𝜙 (𝑍′)

𝜓 (𝑍′)]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

∫ 𝑥𝑓𝑋(𝑥) 𝑑𝑥=𝐸(𝑋)

⇒ ̂𝛼′ = 1
𝑛

𝑛
∑
𝑖=1

𝑓 (𝑍′
𝑖)

𝜙 (𝑍′
𝑖)

𝜓 (𝑍′
𝑖)

11.4.1 Mean of estimator

𝐸𝜓[ ̂𝛼′] = 𝐸𝜓 ( 1
𝑛

𝑛
∑
𝑖=1

𝑓(𝑍′
𝑖)

𝜙(𝑍′
𝑖)

𝜓(𝑍′
𝑖)

)

= 1
𝑛

𝑛
∑
𝑖=1

𝐸𝜓 [𝑓(𝑍′) 𝜙(𝑍′)
𝜓(𝑍′)]

= ∫
∞

−∞
𝑓(𝑍′) 𝜙(𝑍′)

𝜓(𝑍′)⏟⏟⏟⏟⏟
𝑣𝑎𝑙𝑢𝑒

𝜓(𝑍′)⏟
𝑝𝑟𝑜𝑏

𝑑𝑍′

= ∫
∞

−∞
𝑓(𝑍′)𝜙(𝑍′)𝑑𝑍′

= 𝐸𝜙[𝑓(𝑍)]
= 𝛼

Note that this estimate is unbiased (provided simple MC estimate ̂𝛼 is unbiased).

11.4.2 Variance of estimator

𝑉𝜓( ̂𝛼′) = 𝑉𝜓 ( 1
𝑛

𝑛
∑
𝑖=1

𝑓(𝑍′
𝑖)

𝜙(𝑍′
𝑖)

𝜓(𝑍′
𝑖)

)

= 1
𝑛𝑉𝜓 (𝑓(𝑍′

𝑖)
𝜙(𝑍′

𝑖)
𝜓(𝑍′

𝑖)
)

= 1
𝑛 {𝔼𝜓 [(𝑓(𝑧′) 𝜙(𝑧′)

𝜓(𝑧′))
2
] − (𝔼𝜓 [𝑓(𝑧′) 𝜙(𝑧′)

𝜓(𝑧′)]  )
2
}
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11.4.3 Variance reduction proof & condition

Show that Var𝜓 [ ̂𝛼′] ≤ Var𝜙[ ̂𝛼] ⟺ 𝐸𝜙 [𝑓2(𝑍) 𝜙(𝑍)
𝜓(𝑍)] ≤ 𝐸𝜙 [𝑓2(𝑍)]

𝕍𝜓 [ ̂𝛼′] ≤ 𝕍𝜙[ ̂𝛼]
1
𝑛 {𝔼𝜓 [(𝑓(𝑧′) 𝜙(𝑧′)

𝜓(𝑧′))
2
] − 𝛼2} ≤ 1

𝑛 {𝔼𝜙 [𝑓2(𝑧)] − 𝛼2}

𝔼𝜓 [𝑓2(𝑧′) 𝜙2(𝑧′)
𝜓2(𝑧′)] ≤ 𝔼𝜙 [𝑓2(𝑧)]

The LHS is equivalent to

∫   𝑓2(𝑧′) 𝜙2(𝑧′)
𝜓2(𝑧′)⏟⏟⏟⏟⏟

𝜓(𝑧′) 𝑑𝑧′ = ∫ 𝑓2(𝑧′) 𝜙(𝑧′)
𝜓(𝑧′)𝜙(𝑧′)
⏟⏟⏟⏟⏟

𝑑𝑧′

= 𝔼𝜙 [𝑓2(𝑧) 𝜙(𝑧)
𝜓(𝑧)]

11.4.4 Optimal variance condition

Show that for positive 𝑓 , 𝑉 𝑎𝑟𝜓[ ̂𝛼′] = 0 if 𝜓(𝑧) ∝ 𝑓(𝑧)𝜙(𝑧)
i.e. importance sampling works best when new pdf 𝜓 resembles 𝑓 × 𝜙 (payoff × original pdf)

𝜓(𝑧) = 1
𝑐 𝑓(𝑧)𝜙(𝑧)

∫ 𝜓(𝑧) 𝑑𝑧 = ∫ 1
𝑐 𝑓(𝑧)𝜙(𝑧) 𝑑𝑧 = 1

𝑐 = ∫ 𝑓(𝑧)𝜙(𝑧) 𝑑𝑧

= 𝐸𝜙(𝑓(𝑧)) = 𝛼

𝕍𝜓 [ ̂𝛼′] = 1
𝑛 {𝔼𝜓 [(𝑓 (𝑧′) 𝜙 (𝑧′)

𝜓 (𝑧′))
2
] − 𝛼2}

= 1
𝑛

⎧{
⎨{⎩

𝔼𝜓
⎡⎢
⎣

( 𝑓 (𝑧′) 𝜙 (𝑧′)
1
𝑐 𝑓 (𝑧′) 𝜙 (𝑧′))

2
⎤⎥
⎦

− 𝛼2
⎫}
⎬}⎭

= 1
𝑛{𝔼𝜓 [𝑐2]⏟

𝛼2

−𝛼2}

= 1
𝑛 (𝛼2 − 𝛼2) = 0
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11.4.5 Multiple random variates

Importance sampling can be extended to multiple random variates per path

For example, for a path-dependent option with payoff 𝑓 (𝑍1, … , 𝑍𝑚), which is a function of m variates
forming discretized path, the mean of the estimate is

𝐸𝜙 [𝑓 (𝑍1, … , 𝑍𝑚)] = 𝐸𝜓 [𝑓 (𝑍′
1, … , 𝑍′

𝑚) 𝜙 (𝑍′
1, … , 𝑍′

𝑚)
𝜓 (𝑍′

1, … , 𝑍′𝑚)]

If in addition, 𝑍𝑗
𝑖𝑖𝑑∼ 𝜙𝑗, 𝑍′

𝑗
𝑖𝑖𝑑∼ 𝜓𝑗, then

𝐸𝜙 [𝑓 (𝑍1, … , 𝑍𝑚)] = 𝐸𝜓 [𝑓 (𝑍′
1, … , 𝑍′

𝑚)
𝑚

∏
𝑗=1

𝜙𝑗 (𝑍′
𝑗)

𝜓𝑗 (𝑍′
𝑗)

]

11.4.6 Example

Consider a deep out-of-the-money European call with 𝑆0 = 50, 𝐾 = 65
With simple MC, generate final prices as

𝑆𝑇 = 𝑆0𝑒𝑍, where 𝑍 ∼ 𝜙 = 𝑁 ((𝑟 − 𝜎2

2 ) 𝑇 , 𝜎2𝑇 )

Which of the following is a better candidate for 𝜓 ?

𝑍′ ∼ 𝜓 = 𝑁 (log(90
50) − 𝜎2

2 𝑇 , 𝜎2𝑇 ) or 𝑁 (log(30
50) − 𝜎2

2 𝑇 , 𝜎2𝑇 )

The former, since it is ITM. We want to simulate from distributions with higher means (closer to 𝐾 =
65).

12 W12: Optimization in Finance

Most real world problems involve making decisions, often under uncertainty. Making good/optimal deci-
sions typically involves some optimization.

In finance, we must typically decide how to invest over time and across assets.

E.g. mean-variance analysis or Kelly criterion

93



12.1 Types of Optimization Problems

• Straightforward (closed form or polynomial complexity):

– Linear, quadratic, convex
– Equality/linear/convex constraints

• Difficult:

– Discrete optimization (discrete variable)
∗ E.g. indivisible assets, transaction costs

– Dynamic optimization (previous decisions affect future ones)
∗ Investing overtime

– Stochastic optimization (uncertainty)

12.2 Discrete & Dynamic Optimization

Assume you can perfectly foresee the price of a stock. You want to make optimal use of such knowledge,
assuming

• you can only trade integer units of the asset
• every transaction costs you a fixed amount
• you cannot short sell the asset

This is a discrete, dynamic optimization problem. Although there is no randomness (we have perfect
knowledge), the problem is not trivial.

We could consider all possible strategies, but that would be expensive - the search space size is 2𝑛.

We can use dynamic programming (backward induction) instead:

• At any time t, there are 2 states: owning or not owning the asset

• The optimal value of each state at t = the best option out of transitioning to another state + the
optimal value of that state at t+1

• Start from the end, and consider optimal value going backwards to discover the best strategy

E.g. Find evolution of value, assuming no position at 𝑡 = 0 and 𝑡 > 𝑛
Let 𝑆(𝑡) = asset price at 𝑡, 𝑡𝑐 = transaction cost, 𝑉𝑛𝑝(𝑡) = opt. value for no position at 𝑡, 𝑉𝑙𝑝(𝑡) = opt.
value for long position at 𝑡

state \ time t=1 t=2 t=3=n > n
no position 𝑉𝑛𝑝(1) = max{0 +

𝑉𝑛𝑝(2), −𝑆(1) −
𝑡𝑐 + 𝑉𝑙𝑝(2)}

𝑉𝑛𝑝(2) = max{0 +
𝑉𝑛𝑝(3), −𝑆(2) −
𝑡𝑐 + 𝑉𝑙𝑝(3)}

𝑉𝑛𝑝(3) = 0 0
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state \ time t=1 t=2 t=3=n > n
long position / 𝑉𝑙𝑝(2) = max{0 +

𝑉𝑙𝑝(3), 𝑆(2) − 𝑡𝑐 +
𝑉𝑛𝑝(3)}

𝑉𝑙𝑝(3) = 𝑆(3) − 𝑡𝑐 /

E.g.
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12.3 Stochastic Optimization

Consider a similar problem without exact price knowledge (e.g. prices follow binomial tree with some
probabilities)

We want to find the best trading strategy (which maxes the expected P&L)

Define the following:

• 𝑋𝑡 is the state RV (price and position, e.g. long/short)
• 𝑎𝑡 is action (change in state e.g. buy/sell)
• 𝑓𝑡 is a reward function (e.g. cashflow)

We want to maximize expected reward over stochastic actions

Letting 𝑉 (𝑡, 𝑋𝑡) be the optimal value function, we have

𝑉 (𝑡, 𝑋𝑡) = max
𝑎𝑡→𝑇

{𝔼 [
𝑇

∑
𝑠=𝑡

𝑓 (𝑠, 𝑋𝑠, 𝑎𝑠) ∣ 𝑋𝑡]}

= max
𝑎𝑡→𝑇

{𝑓 (𝑡, 𝑋𝑡, 𝑎𝑡) + 𝔼 [
𝑇

∑
𝑠=𝑡+1

𝑓 (𝑠, 𝑋𝑠, 𝑎𝑠) ∣ 𝑋𝑡]}

= max
𝑎𝑡

{𝑓 (𝑡, 𝑋𝑡, 𝑎𝑡) + max
𝑎(𝑡+1)→𝑇

{𝔼 [
𝑇

∑
𝑠=𝑡+1

𝑓 (𝑠, 𝑋𝑠, 𝑎𝑠) ∣ 𝑋𝑡]}}

= max
𝑎𝑡

{𝑓 (𝑡, 𝑋𝑡, 𝑎𝑡) + 𝔼 [ max
𝑎(𝑡+1)→𝑇

{𝔼 [
𝑇

∑
𝑠=𝑡+1

𝑓 (𝑠, 𝑋𝑠, 𝑎𝑠) ∣ 𝑋(𝑎𝑡)
𝑡+1 ]} ∣ 𝑋𝑡]}

= max
𝑎𝑡

{𝑓 (𝑡, 𝑋𝑡, 𝑎𝑡) + 𝔼 [𝑉 (𝑡 + 1, 𝑋(𝑎𝑡)
𝑡+1 ) ∣ 𝑋𝑡]}

E.g. Consider the following Binomial tree, with up/down probability of 1/2:
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Find the optimal strategy that maximizes the expected P/L assuming you can long and short the asset,
and there is a transaction cost of $0.1 /share. Note that there are three possible states now (long,
neutral, short), and 33 = 27 possible strategies. Find the optimal strategy and its value using dynamic
programming, and optionally verify it with an exhaustive search.

Solution: It is not difficult to reason that the best strategy is to go long at 𝑢 and short at 𝑑, since the
up paths have positive expected P/L and the down paths have negative expected P/L (greater than the
transaction costs), and this strategy minimizes the expected costs (you only long/short when you need).
You can actually verify this by calculating the expected P/L of all 27 strategies by brute force (e.g., in
R) to get:

Strategy Expected P//L
s,s,s -1-2tc
s,s,n -1.5-2tc
s,s,l -2-3tc
s,n,s 0.5-2tc
s,n,n 0-2tc
s,n,l -0.5-3tc
s,l,s 2-3tc
s,l,n 1.5-3tc
s,l,l 1-4tc
n,s,s -1-2tc
n,s,n -1.5-1tc
n,s,l -2-2tc
n,n,s 0.5-1tc
n,n,n 0
n,n,l -0.5-1tc
n,l,s 2-2tc
n,l,n 1.5-1tc
n,l,l 1-2tc
l,s,s -1-4tc
l,s,n -1.5-3tc
l,s,l -2-3tc
l,n,s 0.5-3tc
l,n,n 0-2tc
l,n,l -0.5-2tc
l,l,s 2-3tc
l,l,n 1.5-2tc
l,l,l 1-2tc

But you can drastically reduce the required calculations using backward induction/dynamic programming.
Let 𝑉 (𝑡, (𝑆𝑡, 𝑝)) denote the optimal value at time 𝑡 for price 𝑆𝑡 and “position” 𝑝 ∈ {𝑠, 𝑛, 𝑙}.

97



At time 𝑡 = 2 we have:
𝑉 (2, (110, 𝑙)) = 110 − 𝑡𝑐

𝑉 (2, (110, 𝑛)) = 0
𝑉 (2, (110, 𝑠)) = −110 − 𝑡𝑐

𝑉 (2, (100, 𝑙)) = 100 − 𝑡𝑐
𝑉 (2, (100, 𝑛)) = 0
𝑉 (2, (100, 𝑠)) = −100 − 𝑡𝑐

𝑉 (2, (94, 𝑙)) = 94 − 𝑡𝑐
𝑉 (2, (94, 𝑛)) = 0
𝑉 (2, (94, 𝑠)) = −94 − 𝑡𝑐

At time 𝑡 = 1 and 𝑆1 = 102, we have

𝑉 (1, (102, 𝑙)) = max
⎧{
⎨{⎩

0 + 1
2 [𝑉 (2, (110, 𝑙)) + 𝑉 (2, (100, 𝑙))] = 105 − 𝑡𝑐,

102 − 𝑡𝑐 + 1
2 [𝑉 (2, (110, 𝑛)) + 𝑉 (2, (100, 𝑛))] = 102 − 𝑡𝑐,

2(102 − 𝑡𝑐) + 1
2 [𝑉 (2, (110, 𝑠)) + 𝑉 (2, (100, 𝑠))] = 99 − 3𝑡𝑐

⎫}
⎬}⎭

= 105 − 𝑡𝑐

𝑉 (1, (102, 𝑛)) = max
⎧{
⎨{⎩

−102 − 𝑡𝑐 + 1
2 [𝑉 (2, (110, 𝑙)) + 𝑉 (2, (100, 𝑙))] = 3 − 2𝑡𝑐,

0 + 1
2 [𝑉 (2, (110, 𝑛)) + 𝑉 (2, (100, 𝑛))] = 0

102 − 𝑡𝑐 + 1
2 [𝑉 (2, (110, 𝑠)) + 𝑉 (2, (100, 𝑠))] = −3 − 2𝑡𝑐

⎫}
⎬}⎭

= 3 − 2𝑡𝑐

𝑉 (1, (102, 𝑠)) = max
⎧{
⎨{⎩

−2(102 + 𝑡𝑐) + 1
2 [𝑉 (2, (110, 𝑙)) + 𝑉 (2, (100, 𝑙))] = −99 − 3𝑡𝑐,

−102 − 𝑡𝑐 + 1
2 [𝑉 (2, (110, 𝑛)) + 𝑉 (2, (100, 𝑛))] = −102 − 𝑡𝑐,

0 + 1
2 [𝑉 (2, (110, 𝑠)) + 𝑉 (2, (100, 𝑠))] = −105 − 𝑡𝑐

⎫}
⎬}⎭

= −99 − 3𝑡𝑐

98



At time 𝑡 = 1 and 𝑆1 = 98, we have

𝑉 (1, (98, 𝑙)) = max
⎧{
⎨{⎩

0 + 1
2 [𝑉 (2, (100, 𝑙)) + 𝑉 (2, (94, 𝑙))] = 97 − 𝑡𝑐

98 − 𝑡𝑐 + 1
2 [𝑉 (2, (100, 𝑛)) + 𝑉 (2, (94, 𝑛))] = 98 − 𝑡𝑐

2(98 − 𝑡𝑐) + 1
2 [𝑉 (2, (100, 𝑠)) + 𝑉 (2, (94, 𝑠))] = 99 − 3𝑡𝑐

⎫}
⎬}⎭

= 99 − 3𝑡𝑐

𝑉 (1, (98, 𝑛)) = max
⎧{
⎨{⎩

−98 − 𝑡𝑐 + 1
2 [𝑉 (2, (100, 𝑙)) + 𝑉 (2, (94, 𝑙))] = −1 − 2𝑡𝑐,

0 + 1
2 [𝑉 (2, (100, 𝑛)) + 𝑉 (2, (94, 𝑛))] = 0

98 − 𝑡𝑐 + 1
2 [𝑉 (2, (100, 𝑠)) + 𝑉 (2, (94, 𝑠))] = 1 − 2𝑡𝑐

⎫}
⎬}⎭

= 1 − 2𝑡𝑐

𝑉 (1, (98, 𝑠)) = max
⎧{
⎨{⎩

−2(98 + 𝑡𝑐) + 1
2 [𝑉 (2, (100, 𝑙)) + 𝑉 (2, (94, 𝑙))] = −99 − 3𝑡𝑐,

−98 − 𝑡𝑐 + 1
2 [𝑉 (2, (100, 𝑛)) + 𝑉 (2, (94, 𝑛))] = −98 − 𝑡𝑐,

0 + 1
2 [𝑉 (2, (100, 𝑠)) + 𝑉 (2, (94, 𝑠))] = −97 − 𝑡𝑐

⎫}
⎬}⎭

= −97 − 𝑡𝑐

At time 𝑡 = 0 and state n (the only relevant one at the start) we have

𝑉 (0, (100, 𝑛)) = max
⎧{
⎨{⎩

−100 − 𝑡𝑐 + 1
2 [𝑉 (1, (102, 𝑙)) + 𝑉 (1, (98, 𝑙))]

0 + 1
2 [𝑉 (1, (102, 𝑛)) + 𝑉 (1, (98, 𝑛))]

+100 − 𝑡𝑐 + 1
2 [𝑉 (1, (102, 𝑠)) + 𝑉 (1, (98, 𝑠))]

⎫}
⎬}⎭

= max
⎧{
⎨{⎩

−100 − 𝑡𝑐 + 1
2 [(105 − 𝑡𝑐) + (99 − 3𝑡𝑐)] = 2 − 3𝑡𝑐,

0 + 1
2 [(3 − 2𝑡𝑐) + (1 − 2𝑡𝑐)] = 2 − 2𝑡𝑐,

+100 − 𝑡𝑐 + 1
2 [(−99 − 3𝑡𝑐) + (−97 − 𝑡𝑐)] = 2 − 3𝑡𝑐

⎫}
⎬}⎭

= 2 − 2𝑡𝑐
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